

The CHARA Array

Theo ten Brummelaar Director The CHARA Array Center for High Angular Resolution Astronomy Mount Wilson Observatory

Georgia State University

Cheservatoire de la COTE d'AZUR

CHAR

- The resolving power of a telescope increases as the telescope diameter increases.
- The light gathering power also increases with telescope diameter.
- Unfortunately the atmospheric distortion and engineering problems do too.
- We can get around some of these problem by using many smaller telescopes spread out over a large area.

Baseline (meters)

Baseline

Baseline (meters)

10000 km

VLBA spans the Earth

Image © 2005 EarthSat

Google

Eye alt 4014.55 mi

Pointer 33"08'16.94" N 108"28'03 21" W

Streaming |||||||| 100%

1 km Zoom x10000

By using NIR and Visible light instead of radio waves, we can achieve the same angular resolution as VLBA but with a much smaller interferometer

GeorgiaStateUniversity

CHARA Community Workshop 2017-03-15 Layout of the CHARA Array

Vacuum Light Tubes Feed Light from Each Telescope to the **Central Lab**

Optics Laboratory

Georgia<u>State</u>University

CHARA Community Workshop 2017-03-15

The 30 second CHARA tour.

CLIMB: CLassic Interferometry on Multiple Baselines

FLUOR: Fiber Linked Unit for Optical Recombination

bservatoire -

LESIA

High accuracy V² science

 Two telescopes so no phase...
 Broad K band (so far)

GeorgiaStateUniversit

What is PAVO (besides Spanish for Turkey) ?

- PAVO is an integral-field-unit for measuring spatially-modulated pupilplane fringes.
- PAVO combines three beams for closure phase and has the highest sensitivity of all instruments in the visible wavebands.
- PAVO has been completed at CHARA and, weather pending, will be comissioned at SUSI next week.

VEGA: Visible spEctroGraph and

polArimeter

- Highest spectral resolution in the visible (R=30000).
- Combines up to four beams
- Uses a combination of Single Slit Spectroscopy, Speckle Interferometry and "Real" Interferometry.

MIRC: Michiga

DUSTE

ROCMI 2006

CHARA Community Workshop 2017-03-15 CHARA-AO Phase I: Telescopes

Georgia State University

Observatoire

CHARA-AO Phase I: LABAO

CHARA-AO Control

CHARA Community Workshop 2017-03-15 CHARA-AO Phase II: Telescopes

Phase II funds replacing M4 with a deformable mirror at each telescope. This will enable us to correct for atmospheric seeing and increase scientific throughput.

The U.S. lags Europe in access to, support of, and education about OIR Interferometry

NOAO Observing : https://www.noao.edu/gateway/chara/

Mode	Telescopes	Band	Typical limit Mag=	Best performance Mag=	At Spectral Resolution R=
Acquisition	6	V-R	10.0	12.0	Broad band
Tilt tracking	6	V-R	10.0	12.0	Broad band
CLASSIC	2	H or K band	7.0	8.5	Broad band
CLIMB	3	H or K band	6.0	7.0	Broad band
JouFLU	2	K	4.5	5	Broad band
MIRC	6	Н	4	6	42
PAVO	2	630-900 nm	7.0	8.0	30
VEGA (hi-res)	2 or 3	2 bands of 7nm (separation 30nm) in 480-850nm	4.0	5.0	30000
VEGA (med-res)	2 or 3	2 bands of 35nm (separation 160nm) in 480-850nm	6.5	7.5	6000

More exciting times are ahead....

