(Mostly)
Science Topic: Stellar Diameters

Kaspar von Braun
(Lowell Observatory)

CHARA Workshop 2017 -- Pasadena
Motivation

– EMPIRICAL stellar astrophysical parameters.
– Exoplanet characterization via characterization of host stars.
– Stellar physics, particular late-type stars.
– Calibration / constraints for stellar models
– Predictive, semi-empirical relations.
Approach

– IR / optical interferometry and limb darkening corrections: angular stellar diameter.
– Observing: minimize unknown systematics.
– Trigonometric parallax: physical stellar diameter.
– SED fit / spectrophotometry: stellar F_{BOL}.
– From angular diameter and F_{BOL}: T_{EFF} and L.
Status

Empirical HRD (~ 290 stars)

size of data point = log R_{star}

- Status Nov 2016
- $\delta \theta < 5\%$
- $d < 150$ pc
- $R < 100$ R_{solar}
- no fast rotators
- no pulsators

von Braun & Boyajian (2017)
Why Interferometry for Diameters?

– SB Law: \(T_{\text{eff}} \sim (L R^{-2})^{0.25} \sim (F_{\text{BOL}} \theta^{-2})^{0.25} \)

– Alternative approaches:

 • Full-on stellar models

 • Semi-empirical: determine \(T_{\text{eff}} \) spectroscopically, SED fitting for \(F_{\text{BOL}} \), get \(\theta \) and \(R_{\text{star}} \).

 • Interferometric results calibrate models & relations.

– But:

 • Stellar models tend to underestimate stellar radii (5-10%) and overestimate \(T_{\text{eff}} \) (3-5%), especially for late types.

 • For semi-empirical models, \(\sigma T_{\text{eff}} \) of 3-5% result in \(\sigma R_{\text{star}} \sim 6-10\% \).

 • Accuracy, eccentric objects, …
However...

Interferometry prone to difficulties / systematics.
– Atmospheric conditions; time scales.
– (Un)known calibrator sizes; choice of calibrators.
– Uncertainties very hard to characterize.
– Inherently complicated and challenging method.
 • Delay space
 • Proper motion of targets
 • Telescopes experience different weather
 • Vacuum or lack thereof
 • Piston
 • etc
• Delay space
• Proper motion of targets
• Telescopes experience different weather
• Vacuum or lack thereof
• Piston
• etc...

\[\theta \]

\[\text{Baseline } B \text{ sin } \theta \]

light from star

delay lines

interference fringe