(Mostly) Science Topic: Stellar Diameters

Kaspar von Braun (Lowell Observatory)

CHARA Workshop 2017 -- Pasadena

Motivation

- EMPIRICAL stellar astrophysical parameters.
- Exoplanet characterization via characterization of host stars.
- Stellar physics, particular late-type stars.
- Calibration / constraints for stellar models
- Predictive, semi-empirical relations.

LESIA

Approach

- IR / optical interferometry and limb darkening corrections: angular stellar diameter.
- Observing: minimize unknown systematics.
- Trigonometric parallax: physical stellar diameter.
- SED fit / spectrophotometry: stellar F_{BOL} .
- From angular diameter and F_{BOL} : T_{EFF} and L.

Why Interferometry for Diameters?

- SB Law: $T_{eff} \sim (L R^{-2})^{0.25} \sim (F_{BOL} \theta^{-2})^{0.25}$
- Alternative approaches:
 - Full-on stellar models
 - Semi-empirical: determine T_{eff} spectroscopically, SED fitting for F_{BOL} , get θ and R_{star} .
 - Interferometric results calibrate models & relations.
- But:
 - Stellar models tend to underestimate stellar radii (5-10%) and overestimate T_{eff} (3-5%), especially for late types.
 - For semi-empirical models, σT_{eff} of 3-5% result in $\sigma R_{star} \sim 6-10\%$.
 - Accuracy, eccentric objects, ...

However...

Interferometry prone to difficulties / systematics.

- Atmospheric conditions; time scales.
- (Un)known calibrator sizes; choice of calibrators.
- Uncertainties very hard to characterize.
- Inherently complicated and challenging method.
 - Delay space
 - Proper motion of targets
 - Telescopes experience different weather
 - Vacuum or lack thereof
 - Piston
 - etc

CHARA Community Workshop 2017-03-15

- Delay space
- Proper motion of targets
- Telescopes experience different weather
- Vacuum or lack thereof
- Piston

