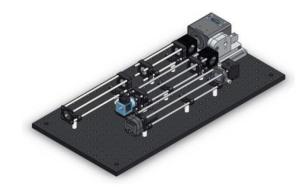


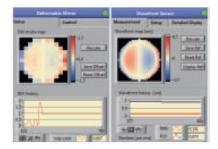
ALPAO CHARA Week

Bertrand Charlet March the 12st 2018


Content

- News at ALPAO: projects and technology
- CHARA DMs status and update
 - Actual status Compliance matrix
 - The story:
 - Mechanical design
 - Actuator layout
 - Actuator testing
 - DM testing
 - Prototyping
 - News!
 - Planning update

Overview


AO Systems

Deformable Mirrors (DM)

Software

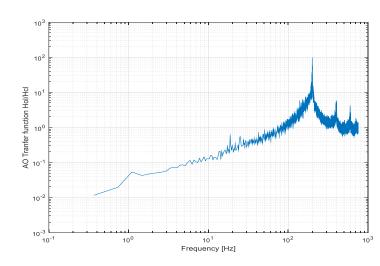
ALPAO – ADAPTIVE OPTICS – DEFORMABLE MIRRORS

Confidential: parsing or copying this document is forbidden without prior written authorization

AO System for Satellite Comm.

ALPAO

- ALPAO DM241:
 - 241 actuators
 - ALPAO DEV5 DM Electronics
 - 160 Mbit/s


REAL TIME COMPUTING

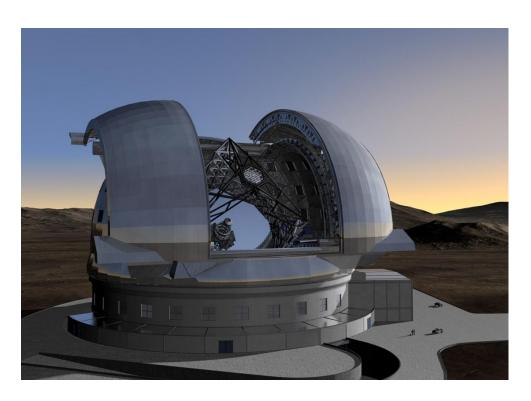
ACE fast (RTC)

- CCD220 based WFS
 - Camera link Full IF
 - 1500 fps
 - 240x240 px
 - 20x20 sub pupils

- Performance
 - Loop rate 1500Hz
 - RTC delay 80µs
 - Rejection bandwidth 100Hz

Laser Guide Star System

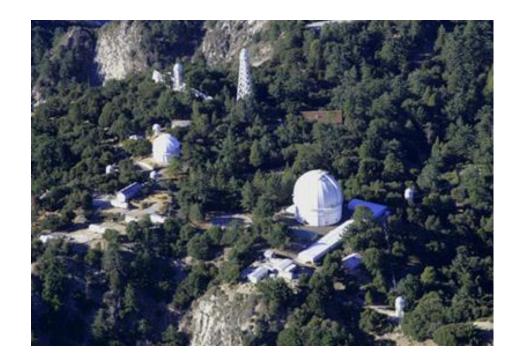
- Space debris and satellite observation
- System including:
 - DM277
 - Laser Guide Star
 - Real Time Computer


ESO Projects

- 2 won projects:
 - Compact DM (64x64 actuators): more than 3 000 actuators
 - XAO DM (128x128 actuators): more than 12 000 actuators

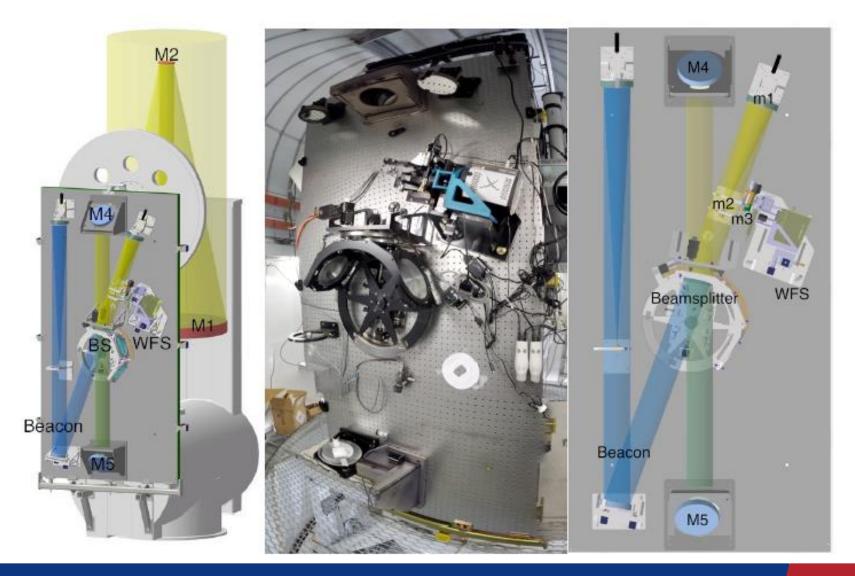
5 DM for VLTi at Paranal

- Application : Astrophysics (interferometry)
- 241 actuators



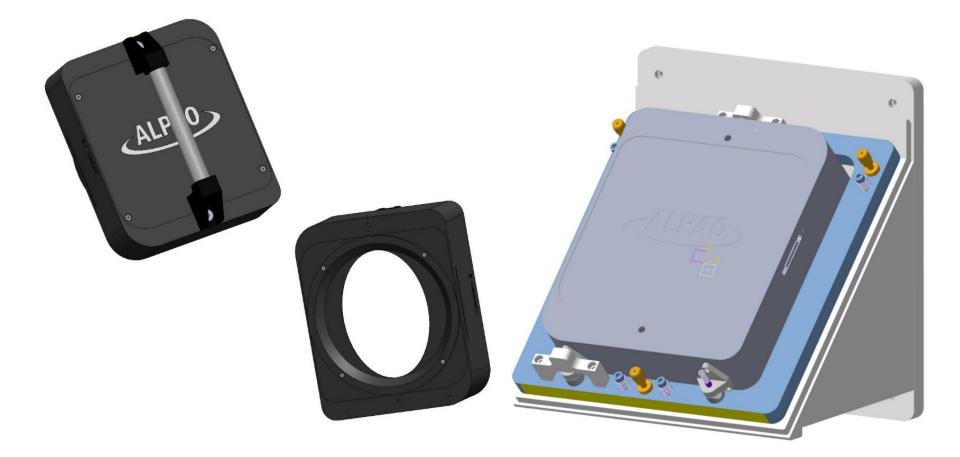
6 DM for the CHARA Array Telescope

- Application : Astrophysics (interferometry)
- 60 actuators
- 177mm x 125mm


Compliance matrix

Item	CHARA spec	ALPAO proposal	Measured spec	Compliant
Active mirror area	125 x 177 mm	125 x 177 mm	125 x 177 mm	Yes
Number of actuator in active area	~50 actuator	60 <x<70< td=""><td>60</td><td>Yes</td></x<70<>	60	Yes
P-V mechanical stroke after flattening	±4 μm	15 µm PV	24 µm PV	Yes
Inter-actuator mechanical stroke	±2 μm	> 3 µm PV	10 µm PV	Yes
Flatness after removal of the static error	30 nm rms	<30 nm rms	42 nm rms	No
Lowest resonance frequency	>500 Hz	750 Hz	520 Hz	Yes
Working wavelength	0.45 2.5 μm	Silver coating	0.45 >2.0 μm	Yes
Surface roughness	<1 nm rms	To be measured	<1 nm rms	Yes
Maximum lag	1ms	<200 µs	~ 10µs	Yes
Communication maximum frequency	1 kHz	<10 kHz	>250 kHz	Yes

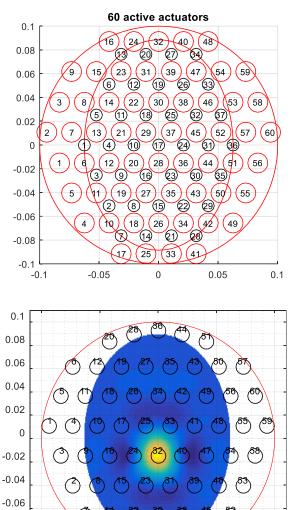
Mechanical design



Mechanical design

 Design was made accordingly with our discussions with CHARA Array Size and mounting fixtures were taken into consideration

Actuator layout



Layout

- Fit existing wavefront sensor
- Actuator over the full circular faceplate
- Edge actuators are slaved

Simulation results:

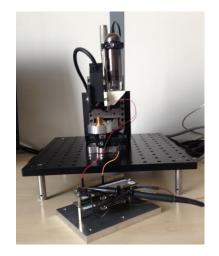
- First eigenmode: 800 Hz
- P2V mechanical stroke: 16.8 μm
- Inter-actuator mechanical stroke: 7.9 μm

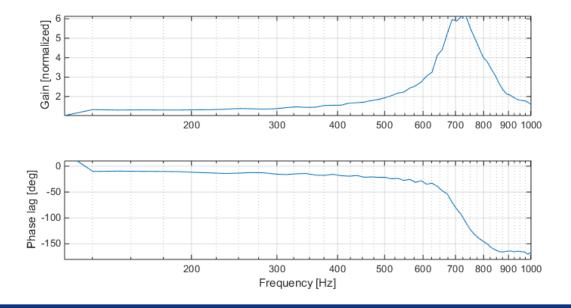
-0.08

-0.1

-0.05

0


0.05


0.1

Dynamic measurements

- Goal: check actuator transfer function
 - Dedicated test setup
- Result :
 - Actuator alone: f_o = 720 Hz
 - Expected DM frequency: f₀=520 Hz (with additional mass from faceplate)

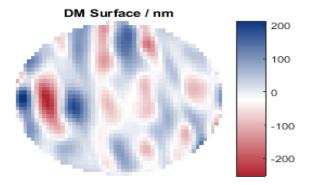
Stroke measurements

- Goal: Verify the stroke of the DM
- Result :
 - Inter actuator stroke > 7 μm PV mechanical
 - Mechanical stroke after flattening > 25 µm PV mechanical

Waffle mode, 20.0 %		Inverse waffle mode, 20.0 %	
	2	-	
-	0	-	
-	-2		

Surface	PV/µm (@20) %)	PV/µm (@100%)
Mirror	1.89	9.45
Wavefront	3.78	18.91

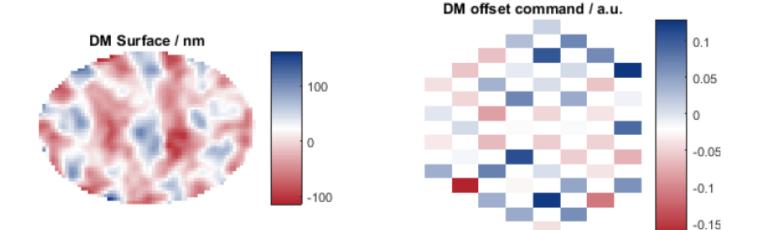
Measured wavefront	Noll index	PV/µm	RMS/µm
	2	66.30	16.65
	3	53.54	13.36
	4	39.89	9.52
	5	46.17	9.55
	6	56.83	11.50


2

0

-2

Work done for best flat

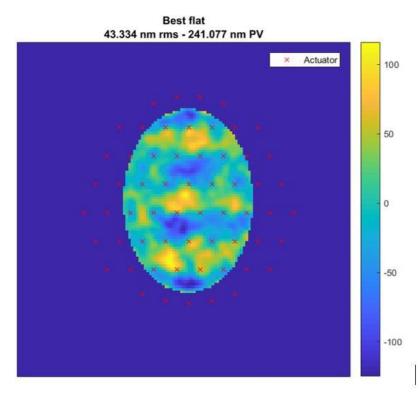


Surface	RMS ¹ /nm	PV ² /nm
Mirror	64.91	466.75
Wavefront	129.81	933.51

- 4 different membranes tested
 - Best results is 65 nm rms mechanical
- Explanation
 - Membrane natural shape is mainly defocus = 120 μm PV mechanical
 - Fitting error of the defocus leads to 60 nm rms
 - Experiment and simulations shows the same results
- Solution: find a <10 μm natural defocus membrane
- Applied research lab contacts
 - We had a recent project with them on thin and very large membrane and was successfull
 - Discussion with them leads to interesting understanding of materials behavior
 - Plan to launch a contract with them for low stress membranes (95% chances that results are good)

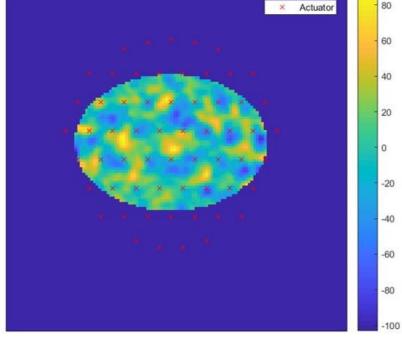
New membrane testing – Best flat

Surface	RMS ¹ /nm	PV ² /nm
Mirror	41.57	276.42
Wavefront	83.14	552.84


¹ RMS: Root Mean Square ² P-V: Peak-to-Valley

16

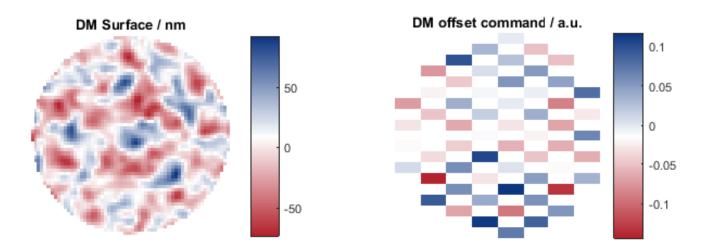
How to improve



Change of the actuator pattern:

29.552 nm rms - 191.995 nm PV

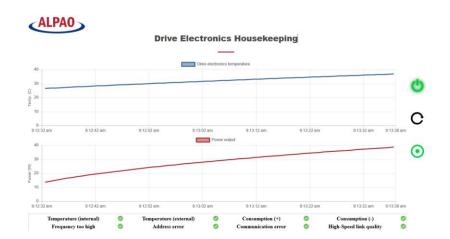
Best flat



\succ **Optimization of membrane rigidity: thickness**

New membrane testing

• 125 mm diameter (like a DMX37):


Surface	RMS ¹ /nm	PV ² /nm
Mirror	27.24	164.92
Wavefront	54.48	329.84

¹ RMS: Root Mean Square ² P-V: Peak-to-Valley

Drive electronics

- New ALPAO drive electronics
 - 1 card for monitoring
 - 1 card for High speed data Link
 - 1 Amplification card for the DM
- Maximum transfer speed = 10Mhz
 for communication
 - 60 channels so up to 150kHz update rate
 - Latency in the drive electronic ~ 6,4µs
- Monitoring via Ethernet or usb connection
 - Get status
 - Power On/Off amplification cards
 - Error acknowledge

Planning update

- Status:
 - One electronics under test at CHARA Array
 - One DM prototype under test at CHARA Array
 - All 6 DMs mechanics and actuators ready waiting for coated membranes
- New and perfect membranes prototypes
 - Prototype testing and validation on course
- Final DMs
 - Reception of new coated membranes: mid/March (now at Balzers)
 - Coated membranes assembly on the DMs + testing: End of March to mid April (everything else would be ready at that time from manufacturing side)
 - Delivery for end of April @ CHARA array

Merci

