Characterization of the new e-APD camera of MIRCX

By Lanthermann Cyprien

Bias voltage in the multiplication region accelerate the electron ⇒Collision ionization ⇒Avalanche effect

Characterized by :

- Avalanche Gain
- Excess Noise Factor (ENF)

Camera characteristics

- Instrument MIRCX
- Developed by First Light Imaging (FLI)
- H band

Manufacturer characteristics :

- Avalanche gain up to 300
- System Gain : 0.77 ADU/e-
- ENF around 1.3
- FPS max of 3.5 kHz
- Dark current < 200 e-/pixel/s
- Read out noise < 1 e-/pixel/read

Photon counting : statistical model

Simulation input :

- Gain = 150 ADU e-
- Flux = 1.5 e-/frame
- Background noise = 18 ADU

- At low ENF : separated peaks
- At high ENF : not separated peaks

Your Talk Title Here

normalized histogram for statistic model, ENF = 1.09316445616

Calibration of unexpected behavior

- Extract temporal sequence of one pixel (photometric channel)
- Subtract median value of several not illuminated pixels of the same line ⇒Take off the sinusoidal signal
- Build histogram of the temporal sequence values

- No clearly separated peaks => no photon counting
- A break between 0 photon events and the others at low flux
- Background histograms not symmetrical

Photon distribution

MIRCX

Poisson distribution for the measured flux not consistent with histograms : Simulation 10% -> data ≈ 0%

> As F (e-) = F (ADU) / G \Rightarrow Total gain is false

> > KYOTO UNIVERSITY

National

ETER

Camera modelization

Free parameters :

- Gain (G)
- ENF
- Flux (F)

Objective : Fit illuminated data histograms

Determination of F by the ratio between 0 photon events and total events

Determination of G by F and the mean of the histogram (H) : $H = G \cdot F$

Determination of ENF by the spreading of the histogram

1) Representation of each p photon events by a Dirac at the position G . p

2) Convolution of the Dirac with M, p times for an event of p photons : Where M is the Gain distribution 0 photon => Dirac in 0
1 photon => Convolution of a Dirac in G with M
2 photons => Convolution of a Dirac in 2G with M, then a convolution of the result with M

3) Normalization of p photon events with the corresponding rate of the Poisson distribution of a given F

4) Addition of the different p photon events

5) Convolution of the result buy the Background histogram

Gain distribution

Gain distribution (M) : **Define Gain and ENF** Model dependent

Spread : $G = \langle M \rangle$ Shape : ENF = $\frac{\langle M^2 \rangle}{\langle M \rangle^2}$

GeorgiaStateUniversity

The CHARA Array Science Meeting 2018

LESIA

×

KYOTO UNIVERSITY

National Universit

Characterization of the new e-APD camera of MIRCX

ETER

10

Chi2 map

- Exploration of the parameter space to perform χ^2 maps
- A single solution found in the parameter space

KYOTO UNIVERSITY

National

Chi2 map

- Degeneracy of solution at high flux (F > 3 e-/frame/pixel)

Observation of the different parameters

- Result consistent for the same requested gain at different flux
- Some outliers for ENF, but from unconstrained high flux
- ENF ≈ 1.6

Characterization of the new e-APD camera of MIRCX

bservatoire LE

Photon distribution

Poisson distribution for the measured flux not consistent with histograms ⇒Total gain is false

KYOTO UNIVERSITY

National

ETER

Photon distribution

Poisson distribution for the flux from the model is consistent with histograms

KYOTO UNIVERSITY

Australiar National ETER

Discussion and perspective

Discussion :

- Gain distribution dependence of the model
 - Test different Gain distribution
- High flux result not constrained
 - Combination CHI2 cubes to constrain high flux result

Perspectives :

- Study massive stars with this new camera
 - Observations already began : faintest star H = 6.5 (previous limit H = 5.5)
- Use the model to try "photon counting" on sky data
- Sub Poisson noise may have a physical explanation => Fano Effect ?

Conclusions

- New model works :
 - Obtain characterizations that explain the data
 - Validation of the characterizations by an independent method
- Validation of a real Gain of half the expected Gain
- ENF of 1.6, unexpected
- Characterization still good enough to improve previous MIRC performance
- Classical photon counting impossible
- Further study needed to explain unexpected behavior of the camera (sub Poisson noise)

