

Project Update:

MYSTIC*

Michigan Young STellar Imager at CHARA

John D. Monnier, Jean-Baptiste le Bouquin, Narsi Anugu, Stefan Kraus, Jacob Ennis, Ben Setterholm, Cyprien Lanthermann,

IPAG: Laurent Jocou

CHARA: Theo ten Brummelaar

* Funding thanks to National Science Foudnation

Science Motivation

I. Imaging Inner disks of Young Stellar Objects

	MWC275 (Herbig Ae)	V1295 Aql (Herbig Be)	SU Aur (T Tauri)
J/H/K uncorrelated	6.2 / 5.5 / 4.8	7.2 / 6.6 / 5.9	7.2 / 6.6 / 6.0
Visibility (V) on longest baseline	0.3? / 0.2 / 0.1	0.5? / 0.3 / 0.2	0.6? / 0.5? / 0.4
J/H/K correlated	7.5 / 7.2 / 7.3	8.0 / 7.9 / 7.6	7.8 / 7.3 / 7.0

- Precision Closure Phases (exoplanets)
- III. Polarization to detect scattered light
- IV. Spectro-Interferometry (Br-gamma)

Integration with MIRCx for J+H+K simultaneous observing (+visible?)

Instrument Architecture

- 1.9-2.4 micron sensitivity
 - Assumes CHARA AO working before commissioning
- CRED-One camera + 200K cryogenic dewar
- 4 beam mode for high sensitivity
 - Using spare GRAVITY IO chip
 - No cross talk
- 6 beam mode for snapshot imaging
 - Using "classic" MIRC-style combiner
- Wollaston mode for polarization experiments
- Many options for grisms for spectroscopy

Team

- John Monnier (PI, UM)
- Jean-Baptiste le Bouquin (UM/IPAG)
- Narsi Anugu (Exeter)
- Stefan Kraus (Exeter)
- Ben Setterholm (UM graduate student)
- Jacob Ennis (UM undergraduate)
- Cyprien Lanthermann (IPAG grad student)
- IPAG: Laurent Joucou
- CHARA: Theo ten Brummelaar ++

Layout on "MIRC Table"

Warm optics (detail)

- New Polarization controller
 - Based on Lazareff et al. LiNbO3 plates
 - Tested for MIRCx already

Warm optics (detail)

Fiber injection using OTS components

Single-mode IR Fibers

- Nufern PM1950
 - Low-OH silica fibers
 - 7%/m loss at 2.2mu, 15%m at 2.37mu
 - Less expensive and robust than fluoride fibers
 - NA 0.20, compatible w/GRAVITY NA 0.19
- Fibrer Feedthrough into Dewar

Cold optics Overview

GRAVITY

- 4 beams = 6 fringes
- Each fringe has 4 outputs ABCD => 24 outputs
- 180 mu separation

Custom-thinned Microlens array Glued to vgroove

- MIRC-style
 - New approach to photometric channels
 - Reimage microlens array itself onto slit

- MIRC-style
 - New pattern

Cross-talk resistant power spectra

Remove an inner fiber For cross talk resistance!

MYSTIC

Some Challenges*

- Length-matching of fibers
 - 2mm -> 5% visibility loss
 - Mitigation: use glass wedges in front to remove differential OPD
- Cryogenic Mounting and IO/fiber interfaces
 - Learning from GRAVITY and IPAG expertise

- Mechanical Design of 200K Dewar
 - We want 200K to be the cold plate temperature, not dewar price
- Accumulation of Delays
 - If we missing Summer 2019 commissioning window, then big problem.

Detector

 See other talks by Stefan and Cyprien on MIRCx results and camera performance analysis

Software

- Based on original MIRC realtime code modified for CRED-ONE
- Deployed first on MIRCx (working already)
- Re-writing all GUIs to be CHARAcompatible
- Unbelievable job by Narsi Anugu so far

Timeline*

Date	Milestone
2018 March	MYSTIC Design Review
2018 April	Prototype new photometric channels (for MIRCx)
2018 Aug	Final Design of 200K Dewar – place order
2018 Fall	Build "WARM" mystic in lab
2019 Jan	Receive dewar and move system inside
2019 Feb-Mar	Test system in Michigan
2019 May	On-sky commissioning at CHARA
2019 July	End of grant officially (JB goes back to France)
2020 July	All monies must be spent by then.

Backups

Spectrograph

- Geometrical Ray Trace
 - Spot diagrams

MYSTIC

Spectrograph

- Physical Propagation Calculation
 - Fiber -> detector
 - Check vignetting at awkwardly-placed cold stop

Image Quality (2.2mu)

ON AXIS: FWHM Spatial Direction: 2.34mm x spectral direction 19 mu

OFF AXIS: FWHM Spatial Direction: 2.25mm x spectral direction 20 mu

Project Status

- Year 1: 2015 Aug-2016
 - Funding starts (National Science Foundation)
 - Narsi Anugu (Exeter) leads joint MIRCX software DAO
 - UM undergrads clone CHARA stepper motor control system
 - CRED-ONE negotiations and contract
- Year 2: 2016Aug-2017Jul
 - Recruited graduate student Ben Setterholm
 - Jacob Ennis leads design/build of polarization controllers
 - Fiber testing and selection
 - CRED-one acceptance testing
 - MIRCx on-sky commissioning

- Year 3: 2017Aug-2018Jul
 - Jean-Baptiste le Bouquin starts at UM for 2-year work
 - Finalize optical design work
 - All new gtk guis
 - MYSTIC project design review (this Wednesday)

