

A new pipeline for MIRCx

Jean-Baptiste Le Bouquin

John Monnier, Narsi Anugu, Cyprien Lanthermann

Rational for an alternate pipeline

- Transition idl → python to increase the user and contributor community
- Work on large dataset in batch mode
- Clean-up 'tuned' algorithms that accumulated over time and upgrades
- Compute Quality Control parameters
- Experience the data myself

Teaser : does it works ??? Not quite yet.

• vis2 fit to iotaPeg (reference binary)

• Residuals (reduced chi2= 6)

MIRCx pipeline

Pobservatoire -- LESIA

🔊 🙆 🐏

Teaser : does it works ??? Not quite yet.

• t3phi fit to iotaPeg (reference binary)

Gerryna Nafel

• Residuals (reduced chi2 = 2)

Teaser : does it works ??? Not quite yet.

• Visibilities

• Closure phase

x10⁹ -

5

Example of night sequence

- Consecutive points have well-behaved statistic.
- Target to target fluctuations, still to be understood.

Georgia Statel Invers

MIRCx pipeline

From RAW to PREPROC

- Clean raw data from detector behaviour \bullet
 - Compute CDS from non-destructive
 - Remove electronic interference 0
 - Remove background 0
 - Flag saturation 0
 - Non-linearity 0

- Output PREPROC
 - Clean, cropped images of fringes
 - Clean, cropped images of x-chan 0

From PREPROC to Real Time Signals

- From pre-proc images ullet
 - Align spectrally fringes and x-chan
 - Extract x-chan flux from profile 0
 - kappa-matrix (x-chan/fringe) 0
 - Normalise x-chan to total flux in fringes 0
 - FFT the image at fringe frequencies 0
 - Fringe cross-talk
- Output RTS
 - Real time fringe fluxes = 15x R(t), I(t)0
 - Real time x-chan flux = 6x P(t)0

60

From RTS to OIFITS

- From Real Time Signals
 - Coherent integration
 - Correct for coherence loss due to GD
 - Discard data based on SNR, GD...
 - Ensemble average of VIS2, T3PHI...
 - Read uv and time from CHARA header

10

- Output OIFITS
 - Uncalibrated interferometric quantities (~1min integration time)

MIRCx pipeline

SYDNEY

Typical interaction with pipeline

• Run the reduction blindly

cd my_data/ mircx_reduce.py

• Redo last part, with tuned parameter

mircx_reduce.py --preproc=FALSE --rts=FALSE --ncoherent=5 --threshold=2.0 --vis-dir=vis_for_test

Calibrate visibilities

cd vis for test/ mircx_calibrate.py --calibrators=SA0_108344,0.8,0.1,HD_162757,0.88,0.1

The CHARA Array Science Meeting 2018

Example of "Quality Control" analysis

ETER

Take away

- Architectures and basic operations are done.
- Download from CHARA gitlab, and run (python 2 or 3)
- Still missing necessary features and algorithms (e.g saturation).
- Automation is improved compared to current pipeline, but not yet to a 'blind science-ready' level.
- Willing to integrate into CHARA archive/pipeline system.

