

Marc-Antoine Martinod Denis Mourard, Karine Perraut, Philippe Berio and CHARA staff

CHARA Meeting – March 2018

Outline

- I. Observations
- II. On-sky validation of FRIEND (martinod 2018, submitted)
- III. Injection into optical fibers with AO (martinod 2018, submitted)
- IV. Conclusion

Date	Telescopes	R0 (cm)(@550nm)	Target	Comments
March (4 nights)	S1-S2	5-12	Sirius Regulus	Test AO (CHARA meeting 2017)
May (1 night)	S2-W2-W1	10	Theta Aql	Instrumental issues
June (2 nights)	S1-W2-W1	7-10	Theta Aql	Instrumental issues
October-12	S2-S1-W2	10	Zet Ori A	Fringes
October-14	S2-S1-W2	9	Zet Ori A	Fringes
October-16	S2-S1-W2	11	Capella	AO and injection

On-sky validation of FRIEND

Observatoire

- Target: Zeta Ori A (mR=1.89), known binary system (Hummel et al. 2013)
- Cal: Kap Ori (mR=2.09)
- Use of LABAO
- 1st night (2017-10-12): calibrated V^2 and CP
- 2nd night (2017-10-14): calibrated CP but no V² (instrumental issue on Cal star)

Observatoire LESIA

- Model fitting using LITpro : 2 Uniform Disks
 - Diameter Aa (mas)
 - Diameter Ab (mas)
 - Visual magnitude difference
 - Seperation (mas)
 - Position Angle (°)
- In Martinod et al. 2018 (submitted)

GeorgiaStateUniversity

On-sky validation of FRIEND Calibrated V²

Observatoire

THE UNIVERSITY OF SYDNEY

National

Data of night of 2017-10-12 1 point = 6000 frames = 2min

ETER

On-sky validation of FRIEND Calibrated CP

On-sky validation of FRIEND

• Results of model fitting

GeorgiaStateUniversit

Parameters	Hummel et al. 2013	2017-10-12	2017-10-14
Diameter Aa (mas)	0.48 ± 0.2	0.54 ± 0.01	-
Diameter Ab (mas)	0.48 ± 0.2	0.45 ± 0.12	-
Visual magnitude difference	2.2 ± 0.1	2.4 ± 0.1	-
Separation (mas)	$\begin{array}{c} 24.1 \pm 0.15 \text{/} 24.07 \pm \\ 0.15 \end{array}$	23.89 ± 0.44	24.23 ± 0.15
Position angle (°)	80.5 ± 0.45 / 80.1 ± 0.46	81.42 ± 0.33	81.00 ± 0.15
Reduced χ^2	-	1.14	1.59

THE UNIVERSITY OF SYDNEY

National University

Observatoire

• Results consistent with expected values:

V² and CP estimations validated and new diameters

l'Observatoire

CHARA

Injection into optical fibers with AO

- Use of LABAO only
- DM 37 actuators
- WFS: Shack-Hartmann 32 subapertures
- Correct WF at 40 Hz
- $\lambda = 500 \ nm$
- Compute 8 first Zernike
- Save average on 4 values

Injection into optical fibers with AO

- Use of: S2, S1 and W2
- 3 modes:
 - Closed loop (CL): correction of turbulence
 - Open loop (OL): servo stopped, DM keeps last shape
 - Flat (FL): reinitialization of DM shape
- Target: Capella (m_R = -0,52), bright enough for LABAO and FRIEND
- Some clouds disturbing photometry and servo

Injection into optical fibers with AO

Statistical analysis on W2

ETER

Injection into optical fibers with AO

Observation of coupling and variance of phase variations

Observatoire

THE UNIVERSITY OF

bservatoire

GeorgiaStateUniver

• σ^2 variance of phase fluctuations

$$\sigma^{2} = \sum_{i=2}^{\infty} a_{i}^{2}$$

$$\sigma_{LABAO}^{2} = \sum_{i=2}^{8} a_{i}^{2}$$

$$a_{i}^{2} : \text{Zernike coeff.}$$

Injection into optical fibers with AO

Correlation between *p* and LABAO data

Injection into optical fibers with AO

Study of additive bias hypothesis

- Additive bias: $\sigma^2 = \sigma^2_{LABAO} + b$
- Assuming calibrated Zernike
- $b = 1.8 \, rad^2$
- Noll's residuals errors at 8th order:

$$\Delta_8 = 0.0525 \, \left(\frac{D}{r_0}\right)^{\frac{5}{3}} = 1.3 \, rad^2$$

THE UNIVERSITY OF

- Other sources:
 - Subsampling of saved data
 - Temporal error ?

Injection into optical fibers with AO

Study of scale factor + additive bias hypothesis

- Scale factor bias : $\sigma^2 = a \sigma_{LABAO}^2 + \Delta_8$
- Model to fit : $\ln(\rho) = \ln(0.69) a \sigma_{LABAO}^2 \Delta_8$

Conclusion

- FRIEND, prototype of SPICA, does the job
 - Study of instrumental effects and signal processing
 - Reliable V² and Closure Phase measurements
 - Study of the injection in optical fibers with partial correction in the visible
- Next : increase and stabilize injection
 - Simulation studies
 - CESAR project (Coupling Efficiency Statistical Analysis and Recording)
 - Better know-how on calibration of AO data

Thank you for your attention

Bonus slides

Short presentation of FRIEND prototype

$$<|V|^2>=rac{< E_{HF}>}{\int_{\Delta\lambda}\kappa(\lambda)\int_{\Delta x}< P_1(\lambda,x)P_2(\lambda,x)>dxd\lambda}$$

$$< B_{0,u,v} > = < B_{1,u,v} > -\alpha < \left(|C_u|^2 + |C_v|^2 + |C_{u,v}|^2 \right) > +\beta N$$

GeorgiaStateUniversity

ETER

On-sky validation of FRIEND

CHARA - FRIEND_3T - S2 S1 W2 + PoP5 PoP4 PoP5 Day: 2017-10-12 - Source: zeta ori

22

25

GeorgiaStateUniversity

24

Right Ascension offset (mas)

23

Observatoire

23

24

Right Ascension offset (mas)

National

25

THE UNIVERSITY OF SYDNEY

Observatoire

22

$$< B_{0,u,v} > = < B_{1,u,v} > -\alpha < (|C_u|^2 + |C_v|^2 + |C_{u,v}|^2) > +\beta N, \alpha = 2$$
 (Basden&Haniff 2004)

EXETER

Injection into optical fibers with AO

Measuring coupling efficiency

- Measuring photometry on FRIEND ($\lambda = 690 \text{ } nm$) for W2
- $N_{W2} = QE S_{tel} \delta \lambda DIT \phi_0 10^{-0.4mag} t_{FRIEND} t_{OA} t_{CHARA,W2} \rho$
- t_{CHARA,W2}?
 - $\rho = \rho_0 Sr, \rho_0 = 0.69$ (Ruillier 1998)
 - OL, $r_0 = 14 \text{ cm} @690 \text{ nm} \Rightarrow S \simeq 2\% \Rightarrow \rho \simeq 1.4\%$
 - $t_{CHARA,W2} = 2.1\%$
- Deduce coupling efficiency (CE) ρ

Injection into optical fibers with AO

S2 (lack of pupils)

W2 (aligned)

S1 (misaligned)

ETER

