

Observatoire

GeorgiaStateUniversit

LESIA

Gail Schaefer

The CHARA Array of Georgia State University

Mount Wilson, CA

Open Access Time at CHARA

- Initiated an open access program at CHARA ullet
 - Supported by NSF/MSIP award
- Community access to telescope time
- Provides 50 nights/year over next four years •
- Time allocated through NOAO TAC: ullet
 - Proposals due at the end of March and September
 - Next deadline is April 2 (for time in Aug-Dec)
- User-friendly database of archival data
 - Jeremy's talk yesterday

- 2017B
 - 6 accepted proposals (low mass stars, exoplanet hosts, binaries)
 - 4 PI's former CHARA consortium members at new institutions
 - 2 PI's new to CHARA
- 2018A
 - 9 accepted proposals (low mass stars, exoplanet hosts, binaries, novae)
 - 4 PI's former CHARA consortium members at new institutions
 - 5 PI's new to CHARA

- Visitor Support Scientist: Gail Schaefer
- Data Scientist: Jeremy Jones
- Observational Assistance: Chris Farrington, Robert Klement, Norm Vargas, Olli Majoinen

- Provide help with planning and taking observations
- Provide calibrated OIFITS files

While processing data for an NOAO program that used CLASSIC

While processing data for an NOAO program that used CLASSIC

> I encountered unexpected scatter in the visibilities

New Strategy for redfluor: Compute Weighted Means

- Edit scans by fringe weight
 - E[min_weight]
 - Risk of biasing data
- Number of standard deviations for outlier removal
 - o[n_sigma]

Observatoire

New Strategy for redfluor: Compute Weighted Means

Observatoire

THE UNIVERSITY OF SYDNEY

bservatoire

GeorgiaStateUnivers

LESIA

- Edit scans by fringe weight
 - E[min_weight]
 - Risk of biasing data
- Number of standard deviations for outlier removal
 - o[n_sigma]
- Compute weighted mean

Australia

- New default in redfluor
- Turn off using -M flag

New Strategy for redfluor: Compute Weighted Means

- Edit scans by fringe weight
 - E[min_weight]
 - Risk of biasing data
- Number of standard deviations for outlier removal
 - o[n_sigma]
- Compute weighted mean
 - New default in redfluor
 - Turn off using -M flag

140

Baseline/Wavelength X 10⁻⁶

150

160

Observatoire

Residuals

120

Comparison of Results

Quick reduction using

median visibilities

Analysis from Boyajian et al. (2012) Quick reduction using weighted mean visibilities

Observatoire

bservatoire

LESIA

THE UNIVERSITY OF SYDNEY

Visibility

Residuals

Georgia State Universit

Note: Uncertainties scaled to force $\chi^2 = 1$

Comparison of Photometric and Interferometric Measurements

GeorgiaStateUniversit

- Comparison of photometric and interferometric Teff
- Systematic trend in at smallest diameters
- Teff for small diameters ($\theta < 1$ mas with CLASSIC) are hotter by as much as 100-400 K

Casagrande et al. (2014)

Comparison of Measurements From Different Combiners

Georgia State University

T. White et al. (submitted)

Comparison of Photometric and Interferometric Measurements

Georgia<u>State</u>Universit

redfluor: Weighted Means

Data Reduction Software

CLASSIC / CLIMB

The CLASSIC / CLIMB data reduction software is maintained by Theo. Please see his website for Download and installation instructions.

- Computing weighted means is currently the default option for redfluor.
- V2_SCANS visibility estimator
- This can be turned off using the -M flag.
- redfluor -V

VERSION: V3.1 Wed Feb 28 14:48:15 PST 2018

- Updates to redfluor code (CLASSIC)
 - Weighted means is currently the default option for redfluor
 - Warm shutters and sky backgrounds [Theo's talk yesterday]
- Possible steps for the future look into uncertainties
 - Standard deviation overestimates scatter in observations
 - Standard error underestimates scatter in observations

