RY Tau and HD 142666: insights from the CHARA/CLIMB YSO survey

Claire L. Davies

cdavies@astro.ex.ac.uk

Collaborators: S. Kraus; T. Harries; J. Monnier; A. Kreplin; J. Kluska; A. Labdon

CHARA meeting 2018 – Paris, France – March 13th 2018

Talk Outline

- Introduction to young stellar objects
- CHARA/CLIMB YSO survey
- RY Tau and HD 142666
- Methodology
- Insights from radiative transfer analysis

Talk Outline

- Introduction to young stellar objects
- CHARA/CLIMB YSO survey
- RY Tau and HD 142666
- Methodology
- Insights from radiative transfer analysis

• Early, short baseline interferometric observations were fit well with ring models.

Eisner et al. (2003) – PTI data

- Early, short baseline interferometric observations were fit well with ring models.
- The characteristic size of these rings scaled with stellar luminosity \rightarrow near-constant temperature across sample.
- Emission likely associated with the dust sublimation front (vertical rim).

Millan-Gabet et al. (2007)

2018/03/13 -- Claire L Davies -- CHARA meeting

- Addition of longer baseline observations, provided by CHARA/CLASSIC indicated that the "bounces" in the visibilities predicted by the simple ring models did not adequately fit the data.
- More detailed modelling of Herbig AeBe stars revealed curved disk rims provided visibilities more consistent with observations.
- Some observations also indicated that hotter material could also exist interior to the silicate dust sublimation radius.
 - optically thick gas?
 - more refractory grain species (e.g. iron)

Tannirkulam et al. (2008)

Talk Outline

- Introduction to young stellar objects
- CHARA/CLIMB YSO survey
- RY Tau and HD 142666
- Methodology
- Insights from radiative transfer analysis

CHARA NIRO survey

- Observed **36** Near-IR Objects (NIRO) in H and K bands using CLASSIC & CLIMB between 2004 and 2014
- All the data has been reduced using a pipeline developed at UM.
 - CLASSIC data reduced (in the main) by Brian Kloppenborg
 - I reduced the full CLIMB data set:
 - 1. Bad scans (drifting etc) are flagged and removed.
 - 2. Fluxes are inspected for drop out due to cloud or instrumental effects.
 - 3. Power spectrum inspected and the "background level" selected manually.
 - 4. Transfer function inspected.
- Provides single estimate of closure phase (CLIMB) and three estimates of the visibility for each baseline pair (one from each CLIMB "output": B1B2_P0, B1B2_P1, B1B2_P3 etc).
- Here, the three estimates of the visibility were inspected for consistency with one another and a weighted average computed for use in the remaining analysis.

Talk Outline

- Introduction to young stellar objects
- CHARA/CLIMB YSO survey
- RY Tau and HD 142666
- Methodology
- Insights from radiative transfer analysis

Fact file: HD 142666 & RY Tau

HD 142666

SpT	$T_{\rm eff}$ (K)	$\log g$	$\log Z$	d (pc)	L_{\star}/L_{\odot}	$A_{\rm V}$	R_{\star}/R_{\odot}	M_{\star}/M_{\odot}	$F_{\star,\mathrm{H}}$	$F_{\star,\mathrm{K}}$	$R_{\rm out}$ (au)
A8	7500	4.3	0.2	150	19.3	1.63	2.42	1.97	0.61	0.35	60

Meeus et al. (1998), Dent et al. (2005), Garufi et al. (2017), Guimarães et al. (2006), McDonald et al. (2017), Lindegren et al. (2016)

RY Tau

SpT	$T_{\rm eff}$ (K)	$\log g$	$\log Z$	d (pc)	L_{\star} (L_{\odot})	$A_{\rm V}$	$egin{array}{c} R_{\star} \ (R_{\odot}) \end{array}$	M_{\star} (M_{\odot})	$F_{\star,\mathrm{H}}$ (%)	$F_{\star,\mathrm{K}}$ (%)	$egin{array}{c} R_{ m out} \ ({ m au}) \end{array}$
G1	5945	1.8	0.0	140	21.3	2.92	4.26	2.44	71	45	80

Calvet et al. (2004); Elias (1978); Isella et al. (2010); Takami et al. (2013)

uv-coverage: HD 142666 & RY Tau

^{2018/03/13 --} Claire L Davies -- CHARA meeting

System geometry: RY Tau

Viewing geometry of RY Tau well-constrained ۲ from CARMA submm/mm interferometry and HST imaging.

- 0.5 ôDec (arcsec) 0 0.5 0 -0.5Isella et al. (2010) Agra-Amboage et al. (2009)
- Our CHARA/CLIMB uv coverage has insufficient ۲ sensitivity along the apparent disk minor axis to be able to recover this geometry:

-1

- Viewing geometry of HD 142666 not very well constrained from previous observations: moderate inclinations (40-60°; Vural et al. 2014; Lazareff et al. 2016) indicated while prior constraints on position angle comes from VLT/NACO.
- Use geometric models for this.

Garufi et al. (2017)

H-band *K*-band 2012 PIONIER 2011 CLIMB $\chi_r^2 = 1.23$ $\chi_r^2 = 5.2$ 50 ϕ_{CP} [$^{\circ}$] C chi-square for -50 centro-symmetric (zero CP) model. 2013 PIONIER 2012 CLIMB $\chi_r^2 = 0.72$ $\chi_r^2 = 1.82$ 50 ϕ_{CP} [$^{\circ}$] -50 2014 CLIMB 2013 CLIMB $\chi_r^2 = 0.94$ $\chi_r^2 = 3.04$ 50 ϕ_{CP} [$^{\circ}$] -50 50 100 150 200 20 80 100 120 140 160 0 40 60 0 max baseline [M λ] max baseline [M λ]

2018/03/13 -- Claire L Davies -- CHARA meeting

Talk Outline

- Introduction to young stellar objects
- Importance of CHARA & the CHARA/CLIMB YSO survey
- RY Tau and HD 142666
- Methodology
- Insights from radiative transfer analysis

Methodology: Radiative transfer analysis

- Using TORUS (Harries 2000) to iteratively solve for radiative equilibrium in the disk
- Adopt 3 different prescriptions for dust sublimation (Draine 2003 silicates):
 - 1. Single-grain model; small grains (0.1 μ m)
 - 2. Single-grain model; large grains $(1.2\mu m)$
- gas-density dependent dust sublimation temperature $T_{sub} = G \rho^{\gamma}(r, z)$

- 3. Two-grain mixture: 0.1μ m and 1.2μ m grains in mass ratio of 9:1 with $T_{sub} = 1800$ K (Pollack et al. 1994). \downarrow rim curvature comes from grain size-dependent cooling efficiency
- Vary scale height, h_0 , and flaring parameter, β , where $h(r) = h_0 \left(\frac{r}{100au}\right)^{\beta}$.

Methodology: Radiative transfer analysis

- Using TORUS (Harries 2000) to iteratively solve for radiative equilibrium in the disk
 - "INO5" models based on Isella & Natta (2005) Adopt 3 different prescriptions for dust sublimation (Draine 2003 silicates): 1 Single-grain model; small grains (0.1μ m) 2. Single-grain model; large grains (1.2μ m) 3. Single-grain model; large grains (1.2μ m) 3. Single-grain model; large grains (1.2μ m) 4. Two-grain mixture: 0.1μ m and 1.2μ m grains) mass ratio of 9:1 with $T_{sub} = 1800$ K (Pollack et al. 1994).

nim curvature comes from arain size-dependent cooling officiency

"THM07" models based on Tannirkulam et al. (2007)

• Vary scale height, h_0 , and flaring parameter, β , where $h(r) = h_0 \left(\frac{r}{100au}\right)^{\beta}$.

Methodology: Radiative transfer analysis

- Produce broadband model SEDs (optical to mm) at set disk inclination.
- Compute images at a set disk inclination at both 1.67 (H-band) and 2.13 μ m (K band).
- Use python to rotate the images to disk PA and extract visibilities and closure phases at baseline lengths and position angles corresponding to u,v coverage.

Talk Outline

- Introduction to young stellar objects
- Importance of CHARA & the CHARA/CLIMB YSO survey
- RY Tau and HD 142666
- Methodology
- Insights from radiative transfer analysis

IN05 0.1 μ m (small) grain models

$$\frac{\text{models}}{(\text{with } h_0 = 10 \text{au}, \beta = 1.06 \text{ and } i = 58^\circ)}$$

IN05 0.1 μ m (small) grain models

nodels
(with
$$h_0 = 10au, \beta = 1.06$$
 and $i = 58^\circ$)

IN05 1.2 μ m (large) grain models

2018/03/13 -- Claire L Davies -- CHARA meeting

2018/03/13 -- Claire L Davies -- CHARA meeting

Much stronger silicate emission is expected

Much worse fit across MIR wavelengths

Previous work on SED modelling for RY Tau has suggested its disk may be pre-transitional (i.e. significant grain growth or clearing at certain disk annuli, producing gaps in the disk).

Introduced a "modular" structure into TORUS which:

- Iteratively solves for a radiative equilibrium temperature structure.
- Handles dust sublimation via an iterative process *at all disk annuli*.
- Can populate different disk regions with different grain sizes/species/densities.
- Can settle grains of different sizes by different amounts.

- CHARA NIRO surveyed 36 objects including several dozen YSOs.
- The data are all reduced: look out for publications led by Kluska, Labdon, Setterholm, Davies.
- Focused on the inner rim shape and structure in two YSOs: RY Tau and HD 142666.
- HD 142666's SED and visibilities are inconsistent with a small grain rim model: grain growth invoked.
- Smaller grain models provide a better fit to the SED and visibilities of RY Tau but so-far-explored "full disk" models appear insufficient.
- Final TORUS development tests are scheduled post HD 142666-publication.