SUBLIMATION FRONTS IN THE HIGHLY INCLINED DISK OF THE T-TAURI STAR SU AURIGAE

AARON LABDON AL612@EXETER.AC.UK

COLLABORATORS: S. KRAUS; C. DAVIES; A. KREPLIN; J. KLUSKA; T. HARRIES; CHARA MEETING 2018 – PARIS, FRANCE – MARCH 13TH 2018

What is Su Aurigae?

- Young Stellar Object in Auriga
- T-Tauri star surrounded by protoplanetary disk
- Part of CLIMB/CLASSIC YSO survey of 36 objects

Parameter	Value
RA (J2000)	04 55 59.39
Dec (J2000)	+30 34 01.50
Mass	2.0 M _⊛
Sp. Type	G2 IIIe
Distance	143 Pc
Radius	3.5 R _⊛
K _{mag}	5.99
T _{eff}	5860 K

Observations

- CHARA/CLIMB 2010 to 2014 •
- PTI 1999 to 2004
- Keck 2011

Aaron H Labdon – al612@exeter.ac.uk - CHARA Meeting 2018

The Data

Geometric Modelling: RAPIDO

Radiative transfer and geometric model Analysis Pipeline for Interferometric Disk Observations

Geometric modelling

- Temperature Gradient Model (TGM) proved best fit
- Hard inner-rim with extended emission component.

Parameter	Value
Inner R	1.43 mas
Outer R	59.94 mas
Temp	1800 K
Power Law	0.81
Inclination	48.88
Position Angle	49.34

Geometric modelling

Aaron H Labdon - al612@exeter.ac.uk - CHARA Meeting 2018

- Dust evaporation leads to puffed up rim
- Large density gradient leads to curvature
- IN05 prescription
- Single (0.1µm) grain species
- Gas density dependent sublimation temperature
- Using TORUS radiative transfer code

Isella & Natta, 2005, A&A, 438.

- THM07 prescription
- Mostly small (0.1µm) grains
- Few large (1.2µm) grains
- Grain-size dependent cooling effect
- Different sublimation radii creates extreme curvature
- Dust present closer to the star

Isella & Natta, 2005, A&A, 438. Tannirkulam & Harries et al. 2007, ApJ, 661. Bans & Königl. 2012, ApJ, 758.

- BK12 introduce dusty disk winds
- Rim shape follows IN05 prescription
- Material driven along field lines inclined to disk surface

Sublimation Fronts

Isella & Natta, 2005, A&A, 438. Bans & Königl. 2012, ApJ, 758.

Radiative Transfer Images

IN05

IN05 + Dusty Wind

Harries, 2000, MNRAS, 315.

Aaron H Labdon - al612@exeter.ac.uk - CHARA Meeting 2018

SU Aur: Reconstructed

- Polychromatic Image Reconstruction Pipeline
- Utilising MiRA reconstruction routine

- Smoothing regularisation technique
- Bootstrapped for 500 iterations

Kluska & Malbet et al. 2014. A&A 564. Thiebaut. 2008. Proc. SPIE, Vol. 7013.

Summary

- Hard inner rim required to fit visibilities.
- Closure phases can be fitted well with zero closure phases.
- Only dusty disk wind models can closely reproduce the observed IR excess.
- Curved inner rim consisting of single silicate grain species.
- Image reconstruction confirms inclination, position angle and radius.
- Asymmetries found are consistent with back edge of a heavily inclined disk.