Angular Sizes and Effective Temperatures of O Stars

Katie Gordon Georgia State University March 13th, 2018

Observationally determined properties

• Angular size + distance \rightarrow Radius **» Interferometry**

Integrated flux + angular size →
 Effective Temperature
 » Spectrophotometry

GeorgiaStateUniversi

$$F_{obs} = \frac{1}{4} \alpha^2 F_{em}$$

$$F_{em} = \sigma T_{eff}^4$$

bservatoire LESIA

The CHARA Array Science Meeting 2018

Table 1. Parameters of target stars

	Star	HD	Spectral	V	B-V	V-K	$T_{\rm eff}$	$\log g$	$V \sin i$
Identifier	Name	Number	Classification	(mag)	(mag)	(mag)	(kK)	(c.g.s)	$({\rm km~s^{-1}})$
a	ξ Per	24912	O7.5 III(n)(f)	4.06	0.02	0.11	$34.8{\pm}1$	$3.43{\pm}0.13$	215
b	$\alpha~\mathrm{Cam}$	30614	O9.5 Ia	4.29	0.05	0.05	$29.5{\pm}0.8$	$3.04{\pm}0.13$	111
с	λ Ori A	36861	O8 III((f))	3.47	0.01	-0.56	$34.3{\pm}0.7$	$3.66{\pm}0.10$	68
d	ζ Ori A	37742	O9.7 Ib	1.88	-0.11	-0.44	29.5 ± 1	$3.25{\pm}0.25$	124
e	ζ Oph	149757	O9.2 IVnn	2.56	0.02	-0.06	$32.5{\pm}0.9$	$3.65{\pm}0.10$	348
f	10 Lac	214680	O9 V	4.88	-0.21	-0.62	$36.4{\pm}1$	$3.99{\pm}0.05$	124

NOTE—Effective temperatures and gravities are average values taken from the sources listed in Table 2. $V \sin i$ values are from the Catalog of Stellar Rotational Velocities (Glebocki & Gnacinski 2005).

Companions: λ **Ori** A \longrightarrow **spectrophotometry** – 1

bservatoire LESIA

 $\zeta Ori A \longrightarrow spectrophotometry - 2$ interferometry – 1 (28 mas)

Observatoire

THE UNIVERSITY OF SYDNEY

Australiar National University

GeorgiaStateUnivers

- The CHARA Array Science Meeting 2018

 Table 5. Observations and measured angular diameters

				θ_{UD}		θ_{LD}
Star	HD	Baselines	N_{V^2}	(mas)	μ	(mas)
ξ Per	24912	W1E1	23	$0.21{\pm}0.02$	0.174	$0.21 {\pm} 0.02$
α Cam	30614	S1E1	23	$0.226{\pm}0.019$	0.250	$0.229 {\pm} 0.019$
λ Ori A	36861	S1E1;W1E1	161	$0.219{\pm}0.015$	0.253	$0.226 {\pm} 0.015$
ζ Ori A	37742	W1E1	23	$0.424{\pm}0.006$	0.203	$0.430 {\pm} 0.006$
$\zeta ~{ m Oph}$	149757	S2W1	69	$0.490{\pm}0.010$	0.204	$0.498 {\pm} 0.010$
		S2E2	161	$0.580{\pm}0.010$		$0.588 {\pm} 0.010$
10 Lac	214680	S1E1	119	$0.12{\pm}0.03$	0.183	$0.12{\pm}0.03$

Observatoire

THE UNIVERSITY OF

National University

 ζ Ori A – about 0.01 mas smaller when incoherent flux of companion accounted for

 ζ Oph – observed rotational distortion (vsin(i) = 348 km/s) 15% variation in size

Observatoire

10 Lac – really small!

ζOph

Assumed PA of 132.5° (Poeckert et al. 1979)

major axis = 0.6 mas minor axis = 0.5 mas

Observed values: 0.588 mas 0.498 mas

Observatoire LESIA

Spectrophotometry

UV – IUE (corrected with routine from Massa & Fitzpatrick 2000)

Optical – Burnashev 1985, Kharitonov et al. 1988, or Krisciunas et al. 2017

IR – 2MASS, WISE, and AKARI

→ WISE and AKARI points not used for giants and supergiants

Special Cases:

 λ Ori A – UV from OAO

α Cam – NUV from HUT

10 Lac – high quality spectrum from HST/STIS (UV to optical)

Modeling

TLUSTY O star models:

- 27500 55000 K with 2500 K steps
- Logg range from 3.0 to 4.75
- Galactic abundance
- $V_t = 10 \text{ km/s}$

Fitting program:

- Used a grid search χ² method to fit for three parameters at once – angular size, effective temperature, and E(B-V)
- Plots of T vs. θ with contours showing χ^2 space

GeorgiaStateUniversi

bservatoire

Observatoire

THE UNIVERSITY OF SYDNEY

Georgia State University

÷

30

0.15

Observatoire (Ξ)

l'Observatoire LESIA

京都大学 KYOTO UNIVERSITY

Australian National University

EXETER

— The CHARA Array Science Meeting 2018 —

 Table 10. Comparison of best fit and literature values

	Best Fit	Literature	E(B-V)	E(B-V)	E(B-V)
Star	Temperature (K)	Temperature (K)	Best Fit	Savage et al. (1977)	Maíz Apellániz & Barbá (2017)
ξ Per		34785		0.25	0.278 ± 0.007
α Cam	30000 ± 1500	29485	0.284	0.26	0.262 ± 0.006
λ Ori A	36000 ± 9000	34340	0.107	0.12	0.177 ± 0.011
ζ Ori A	32500 ± 500	29500	0.043	0.08	0.044 ± 0.007
$\zeta ~{ m Oph}$	32600 ± 1300	32450	0.352	0.29	0.297 ± 0.006
10 Lac	36000 ± 12500	36428	0.096	0.08	0.077 ± 0.006

Unable to find a best fit temperature for ξ Per

Observatoire

The CHARA Array Science Meeting 2018

Ø

Observatoire LESIA

\$

Georgia State University

The CHARA Array Science Meeting 2018

GeorgiaStateUniver

bservatoire

Stars with single brackets → more discrepant

Cooler stars —> more discrepant

Possible flux differences between CMFGEN models and TLUSTY at cooler temperatures – maybe a factor?

- Accurate sizes and temperature estimates for O stars
- Reddening estimates
- Tested observations against model
 Sizes overestimated by an average of ~7%
- Use same method for B star sample TLUSTY B star models
 - 27 B stars, 3 Pleiades

Questions?

.