

Detecting faint binary companions using phases and other NPOI developments

Henrique R. Schmitt, Ellyn K. Baines, Anders M. Jorgensen, Tom Armstrong, Dave Mozurkewich, Gerard van Belle, Sergio R. Restaino

U.S. NAVAL RESEARCH LABORATORY NAVY Precision Optical Interferometer

- Joint project between NRL, USNO and Lowell Observatory
- Observes at visible wavelengths (550 to 850 nm) with 16 channels
- Two nested arrays:
 - 4 astrometric stations
 - 6 imaging array stations distributed among 30 piers
- Combines up to 6 beams
- Apertures are 12-cm
- Magnitude limit: 6.0 mag
- Baselines span 9 to 432 m

U.S.NAVAL RESEARCH LABORATORY

The NPOI Stellar Imaging Project

- Lead by Anders Jorgensen (NMT)
- Poor-man's array, 3 roughly equally spaced chains.
- Switch between 3 chains without moving telescopes
- Complete UV coverage in 3 nights
- New data acquisition and fringetracking system (New Classic)
- Real-time coherencing (bootstrapping) on short and long baselines.
- Post-observation coherent integration to recover SNR on long baselines.

U.S. NAVAL

HR 4377 5-Station Bootstrapping

4

Coherent Integration

- Make use of phase information instead of throwing it away as is done with V² and V³.
- Rotate complex visibilities by a phase reference, e.g. based on phase at different wavelengths or different baseline.
- Better SNR product.

U.S.NAVAL

LABORATORY

- Use coherent integration on (a) faint targets, (b) resolving baselines, (c) individual channels of high-resolution observations.
- But beware of phase noise amplitude reduction.

• The CHARA Array Science Meeting 2018

HR 4377

For a uniform disk expect nulls at ratios 3.8, 7.0, 10.1, corresponding to e.g. 62, 114, and 152. **4 minutes of data.**

The CHARA Array Science Meeting 2018

Diameter measurements with the NPOI

- 87 stars (5 dwarfs, 3 subgiants, 69 giants, 3 bright giants, 7 super giants
- Determined physical radius, T_{eff}, L_{bol}, luminosity, mass and age

Precise diameter measurements

- Use coherent integration to increase SNR and determine the null crossing wavelength (Jorgensen et al. 2012) - Can determine the null crossing wavelength with a precision better than 1:100 maybe even better than 1:1000, which will be a good tool for precision variability

U.S. NAVAI

_ABORATORY

- Classical Cepheid with pulsation period of 7.17 days (Evans et al. 2013)
- Triple stellar system with faint companion
- V=3.8 mag and θ =1.804 mas (Baines et al. 2018)
- Observed with baseline lengths of 19 to 79m
- Phase jump is consistent with Δ m~5 mag binary with a separation of 15mas.

Summary

- We recently published a large catalogue of stellar diameters
- We are working towards imaging large targets with the NPOI
- Demonstrated 5 station bootstrapping, reaching the 2nd null
- Working towards precision diameter measurements
- Developing phase nulling technique to detect faint stellar companions