

SPICA Stellar Parameters and Images with a Cophased Array

ETER

The CHARA Array Science Meeting 2018 Scientific context

IF WE DON'T KNOW THE STAR, WE DON'T KNOW THE PLANETS

Exo earth Characterization Direct imaging From planets to planetary systems Planet and environment Multiscale approach Diversity pssier préparé par le Conseil S<u>cientifique du PNP</u> Formation & evolution

Stars as Sun Star/planet Asteroseismology Surface imaging Improved modeling Habitability Diversity High angular resolution

ilan & Perspectives

(Septembre 2014)

The science niches of the VLT-iVis

(Millour et al., 2018, submitted to Exp. Astr.)

Fundamental parameters of MS stars

Needs: magnitude limit, high efficiency (fast!), many simultaneous baselines

Survey of companions of close A, B stars below 30AU (current limit of AO exploration).

Needs: limiting magnitude, high efficiency (fast!), ≥ 4 telescopes

AGB, RSG

Needs: snapshot imaging, (very) high spectral resolution

Stellar environments

Needs: snapshot imaging, (very) high spectral resolution

Summary of performance

Limiting magnitude \rightarrow SNR > 10 per spectral channel, in 10mn, V=0.1

Different spectral resolutions (columns) and array configurations (rows) are considered. For each spectra resolution, we consider three modes of fringe stabilization.

		Low Resolution			Medium Resolution		High Resolution				
Resolving power			300			3000		30000			
Width of spectral channel (nm)			2			0,2		0,02			
Number of spectral channels		150			500		500				
Total spectral band (nm)		300			100		10				
	N V2	N-		Tracking	Tracking		Tracking	Tracking		Tracking	Tracking
	N-V-	СР	DIT=10ms	DIT=100m	DIT=30s	DIT=10ms	DIT=100m	DIT=30s	DIT=10ms	DIT=100m	DIT=30s
4 UTs, Sr=0.08	6	3	9.5	10.7	12.1	7.0	8.2	9.7	4.5	5.7	7.2
4 ATs, Sr=0.3	6	3	7.5	8.7	10.2	3.6	4.7	6.3	1.0	2.2	3.7
6 ATs, Sr=0.3	15	10	7.2	8.3	9.8	3.1	4.2	5.8	0.6	1.7	3.3
8 ATS, Sr=0.3	28	21	6.8	7.9	9.5	2.8	4.0	5.5	0.3	1.5	3

SNR=10(/Ch) V*=0.1, Tint=10mn

High level requirements **Diameters:**

- magR=6 (but at low V^2)
- High precision, high efficiency (6T)
- R=300 (LR mode)

Imaging

- magR=4 (but at low V^2)
- UV coverage (6T, +Supersynthesis)
- R=3000 (MR mode)

ETER

Survey mode testing with VEGA+CLIMB 2017-10-15

10mn per star, every 15mn. Clear identification of overheads (actions in progress) Night=115Gb ⇔ SPICA~1Tb...

No fringes drift, no pupil drifts. Only 1 NIRO alignment after a crash

Data processing in progress \rightarrow stability of the transfer function?

ETER

7

Optical design of SPICA

Qualitative behaviour under partial correction by AO Based on the code by Mike Ireland ~r0=10cm, t0=6ms

More quantitative analysis by M.A. Martinod (2018)

EXETER

Observatoire

Australian National University

12

Georgia State University

KYOTO UNIVERSITY

SNR consideration ... long exposures -> Fringe Tracker

Limiting magnitude defined as S/N=10 per spectral channel in 10mn of integration

	R=140	R=3000
V ² =0.25	8.7	5.4
V ² =0.01	5.5	2.3

Table 1: Limiting magnitude with a group delay tracker only

	R=140	R=3000
V ² =0.25, DIT=0.2s	10.1	6.7
V ² =0.01, DIT=0.2s	6.7	3.5
V ² =0.25, DIT=30s	10.4	7.1
V ² =0.01, DIT=30s	7.0	4.0

Degraded transfer function

Table 2: Limiting magnitude with a phase tracker

THE UNIVERSITY OF SYDNEY

Vational University

Observatoire

These estimations use the same S/N calculator of FRIEND, validated on-sky

bservatoire

GeorgiaStateUniver

SPICA/CHARA FT: guiding principles and baseline solution

• Do not re-invent the wheel: lessons learned from CHAMP, GRAVITY-FT

- Minimization of the development
- Full integration inside the CHARA infrastructure: a general-purpose FT if possible
- ABCD all pairs
- IO device, H band Silicium technology
- Fast and low noise detector

OPD

The solution:

- Use the H-band MIRCx fibres to feed a 6T ABCD IO component that will feed the MIRCx Selex detector
- Develop a real-time phase sensor software + a state machine to control the CHARA DL

IO component for 6T-ABCD fringe sensor

Fig. 1. Scheme of a 6-telescope beam combiner. For clarity, this scheme is vertically anamorphozed by a factor 2. From Labeye PhD, 2008.

Pre-study made by VLC photonics

- Technology is mature (2 or 3 different platforms)
- T between 35% and 50% (+?)
- Cost: 13k€ + 30k€ 3-4m delay

The specifications are the following:

- Operation wavelength range: 1.5-1.8 μm (i.e., H astronomical band)
- Single-mode waveguides over the H band and with a Numerical Aperture (NA) in agreement with the standard NA of single-mode fibers: NA at 1/e²: 0.13 < NA < 0.15 at 1.55 μm in all directions
- Operation with both linear polarizations simultaneously
- Number of telescopes to be combined: 6
- Number of baselines to be coded: 15
- Type of fringe coding: ABCD coding
- Phase shift between 4 ABCD outputs: 90° +/- 10° over the whole spectral band.
- Throughput: larger than 60% over the H band (goal: 65%)
- Contrast level: larger than 95% in polarized light
- Flux balancing: all the outputs corresponding to one input waveguide should have the same flux over the H band. Tolerance: +/- 15%
- Flux cross-talk: below 0.5% (an input beam that is not supposed to contribute to a fringe pattern contribute to less than 0.5% of the flux)

Estimation of performance for a H-band CHARA FT

bservatoire LESIA

Australian National University

THE UNIVERSITY OF SYDNEY

Observatoire

ETER

KYOTO UNIVERSITY

17

SPICA Development Plan

Fringe Tracker

- Funding application (CNRS) for FT sent on 1 Mar 2018 (\rightarrow . June 2018)
- Design phase of the IO component (Summer 2018) + construction (this fall)
- Photometric characterization at IPAG (winter 2018) ٠
- Construction of the FT 6T testbench in Nice (beg. 2019) on . the basis of the LESIA Gravity-FT table extended to 6 beams
- Development of the control system, phase sensor, state ٠ machine in 2019 (based on the Gravity software)
- Acceptance for departure to CHARA: Spring 2020
- Integration: Summer 2020 ٠
- 2-year postdoc funded by OPTICON (Fabien Patru, this fall) ٠
- Support from Lagrange Lab in Nice for opto-mechanical . interface to MIRCx

SPICA

- CESAR to CHARA in June 2018. Final validation of the optical design (including or not TT mirror, sensor for TT)
- Funding application (ANR) in Nov. 2018
- Start of the detailed design by the Nice technical group (after the final delivery of MATISSE): end of 2018.
- Construction in Nice from Summer 2019 to Summer 2020. Tests in Nice winter 2020
- Integration at Mount Wilson around Summer 2021

PDR: T4-2018 FDR: T2-T3 2019

Look for alternative funding solutions at University level (end of 2018) or EU level in 2019.

