

Update on Be stars and BA supergiants

R. Klement, A. Carciofi, R. Ignace, G. Hallinan, A. Meilland, D. Mourard, D. Faes, T. Rivinius, R. Vieira, L. Matthews, S. Štefl, ...

OUTLINE

- BA supergiants with CHARA/VEGA Deneb
- Classical Be stars (CBes) with CHARA/VEGA β CMi
- Outer disks of CBes probed by radio fluxes (JVLA, VLA, ATCA, APEX/LABOCA, CARMA, ...)
- Spectral monitoring for Be star outbursts \rightarrow ToO MIRC-X proposal
- MIRC-X program on imaging the surface of Deneb (to be observed in June 2019)
- Translating of hand-written diaries of czech astronomer and philosopher Karel Hujer (mentor of Hal McAlister) for upcoming books by Hal
- Lab duties daily alignment

CHARA/VEGA

- VEGA 4T mode has previously worked when simultaneously using MIRC to stabilize the fringes • (Mourard+2015)
- VEGA 4T + CLIMB 3T mode (most of my data) so far unsuccessful ۲
- 2T & 3T mode works final reduction still pending •
 - Time series of 2T HR differential Hα data of Deneb 2017 2018

THE UNIVERSITY OF SYDNEY

- 2T data for Rigel, 6 Cas, μ Cep
- 3T snapshots of P Cyg, HD 190603, 55 Cyg, 69 Cyg
- 2T & 3T data for Be stars β CMi and κ Dra

ervatoire

BA supergiants with VEGA

- Massive stars evolving from MS to RSG phase (α Cyg variables) and possibly after RSG.
- Distance indicators via wind-momentum-luminosity relationship (WMLR)
- A.k.a. luminous blue variables (LBVs) if showing massive outbursts
- Variable **line-driven winds** with small-scale & large-scale asymmetries
 - P Cygni line profiles strongest emission in $H\alpha \rightarrow$ high resolution spectroscopy and spectro-interferometry ideal to probe the wind \rightarrow spectro-interferometric **imaging**
 - Bright spots/non-radial pulsations \rightarrow localized time-dependent mass ejections \rightarrow hints of corotating ٠ interaction regions (Chesneau+2010, 2014)
 - Signatures of large-scale magnetic confinement of wind not detected •

Table 2. Stellar parameters of Deneb.

Name	Deneb
Spectral type	A2 Ia
d	$802 \pm 66 pc$
Radial velocity	$2.50 \rm km s^{-1}$
Atmosphere	
T _{eff}	8525 + 75 K
$\log a$ (cgs)	1.10 ± 0.05
n(He) (number fraction	0.11 ± 0.01
[M/H]	-0.20 ± 0.04
Ĕ	$8 \pm 1 \mathrm{km s^{-1}}$
ž	$20 \pm 2 \text{ km s}^{-1}$
v sin i	$20 \pm 2 \text{ km s}^{-1}$
Photometry	
V ^a	1 ^m 25
$R - V^{a}$	+0 ^m 09
$U - R^{a}$	-0 ^m 23
$(B-V)_{0}^{b}$	0 ^m 05
E(B-V)	0 ^m 04
Au	0 ^m 11
$(m_V - M_V)_0^c$	$9^{m}52 + 0^{m}18$
M _V	$-8^{m}_{m}38 \pm 0^{m}_{m}18$
B.C. ^b	$-0^{m}11$
M _{bol}	$-8^{m}_{}49 \pm 0^{m}_{}18$
Physical	
$\log L/L_{\odot}$	530 ± 0.07
R/R_{\odot}	203 ± 17
$M^{\text{spec}} / M_{\odot}$	19 ± 4
M ^{ZAMS} / M _o	23 + 2
$M^{\text{evol}} / M_{\odot}$	18 ± 2
Wind noremeters	
	$3.1 \times 10^{-7} M_{\odot} \text{ yr}^{-1}$
n. d	$240 \pm 25 \mathrm{km s^{-1}}$
ß	3.0
г Śна	$35 \rm km s^{-1}$

^{*a*} Johnson et al. (1966); ^{*b*} calculated from the ATLAS9 model; ^{*c*} Humphreys (1978); ^{*d*} Hirsch (1998).

Deneb	with	VEGA

- Deneb α Cyg, A2Ia, UD diameter 2.4 mas, R = 1.14
 - Closest and most studied among BA supergiants, but huge uncertainty on the distance, mass loss rate, ...
 - Hα line profile not yet reproduced by any model
 - Spherically symmetric wind with second order inhomogenities **pioneering VEG data** (Chesneau+2010)
- Radiative transfer modeling with Monte Carlo radiative transfer code HDUST (Carciofi & Bjorkman 2006)
 - Used extensively on Be star disks purely gaseous, tenuous
 - Full 3D capability in principle ideal for exploring structured hot star winds in detail – modeling efforts underway

Deneb with VEGA

Deneb – HDUST model

NPOLL

9

Classical Be stars

- Rapidly rotating **B** stars showing line **e**mission from circumstellar decretion disks
- Favorite targets for (spectro-)interferometry
 - Disk-like geometry (Quirrenbach+1994)
 - Keplerian rotation (Meilland+2007)
 - One-armed density waves (Carciofi+2009)

Classical Be stars with VEGA – β CMi

- Previous multi-technique study (Klement+2015) VLTI, CHARA, and NPOI data
- Stable disk ideal for spectro-interferometric imaging what about HR across H α ?

Outer disks of Be stars probed by radio fluxes

- Are Be disks truncated by binary companions?
 - Spectral energy distribution (SED) **turndown** evident at long wavelengths when data of sufficient quality available (Waters+1991, Klement+2017) – most likely caused by truncation due to (unseen) companions
 - Presence of sdO/sdB companions could explain why Be stars rotate so fast and consequently form decretion disks (Wang+2017)
 - Centimeter fluxes from upgraded VLA suggest that Be disks might be **circumbinary** with small companion carving a gap (like planets in protoplanetary disks?)

Outer disks of Be stars probed by radio fluxes – β CMi

Outer disks of Be stars probed by radio fluxes – β CMi

Outer disks of Be stars probed by radio fluxes - β Mon A

Outer disks of Be stars probed by radio fluxes – 57 Be stars

- Radio fluxes or upper limits available for 57 Be stars
- How prevalent is SED turndown among classical Be stars?
 - $F_{\nu} \propto \lambda^{-\alpha}$ extrapolate IR power law to radio, compare α in IR and radio if available
 - 21 stars data inconclusive, however, at least 7 of these are known binaries (e.g. 59 Cyg, 60 Cyg)
 - 5 stars evidence against SED turndown, however, at least 2 of these are known binaries (e.g. α Eri) SED variability
 - 31 stars evidence of SED turndown (at least 6 known binaries) for 8 radio SED slope/shape can be recovered thanks to new JVLA data

19

57 Be stars with radio data example of no turndown

31 Be stars with SED turndown

22

31 Be stars with SED turndown - all stars

