



# Status and plans for CHARA/SPICA fringe tracking



**GeorgiaStateUnive** 



THE UNIVERSITY OF SYDNEY

Observatoire









• SPICA-FT project

• SPICA-FT testbed

• Lessons learnt from GRAVITY-FT

• *Injected* piston in H wrt R band















ETER



### SPICA-FT project: Overview



- <u>Scientific need</u>: Reaching **low fringe contrast** or **faint magnitude** to observe scientific objects in the visible wavelengths
- <u>Goal</u>: Develop a **6T fringe tracker** for the **CHARA** interferometric array
  - MYSTIC K band, MIRCx H band
  - SPICA H-band 6T-ABCD integrated optics (IO) beam combiner
    - Flexibility of fibers and IO chip to easily interface SPICA-FT into MIRCx
- <u>Top Level Requirements:</u>
  - TLR 1: FT-SPICA must operate with **up to 6 telescopes**
  - TLR 2: FT-SPICA must track fringes for stars up to magnitude R=8 which are unresolved in H band (corresponding to magnitude H=7 for main sequence stars)
  - TLR 3: FT-SPICA must co-phase the 6 telescopes with :
    - a precision of 90nm over a duration of 200ms (goal 2s)
    - a precision of 180nm over a duration of 30s
  - TLR 4: Robust (against OPD vibration, flux drop out, low SNR, resolved baseline)
  - TLR 5: **Autonomous** (no decisions to be taken by the observer)















### SPICA-FT testbed : Goals



- SPICA-FT testbed implemented in Lagrange laboratory (Nice Observatory)
- 1<sup>st</sup> goal: Interferometric tests of ABCD IO chips
  - Transmission of each function
    - X coupler
    - Y junction
    - Phase shifter ( $\pi/2$ ,  $\pi$ ,  $3\pi/2$ )
  - Instrumental visibility
  - Instrumental **phase shift** between each pair of beams
  - Above parameters wrt wavelength and polarization



- P2VM calibration
- Phase sensor
- OPD controller
- State Machine
- Servo-Loop

SPICA fringe tracker



















#### The CHARA/NPOI Science Meeting 2019 **SPICA-FT** testbed : Setup

- Coherent white light source
- 6 coherent input beams
- 6 injection modules (manual tip-tilt + focus)
- 6 motorized shutters
- 6 DLs slow piezo translation stage
  - Mechonics, 30Hz, stroke 8mm, open loop
- 5 DLs **fast piezo** actuators (  $\Leftrightarrow$  DLs CHARA)
  - Jena, 300Hz, stroke 38mm, close loop
- Spectrometer (R=30, 5 spectral channels)
- IR detector
  - PhotonFocus, 300 fps, 640x512 pixels of 15mm
- Opto-mechanical mountings in PETG + carbon
  - Manufactured by a 3D printer

















- **Correct the static OPD**
- **Apply slow OPD perturbations**
- **P2VM** calibration
- **Apply fast OPD perturbations**
- **Apply fast OPD corrections**









#### The CHARA/NPOI Science Meeting 2019 **SPICA-FT** testbed : Stability



ETER

OPD stability *wrt* time & temperature (measured with a SIOS interferometer) ullet





bservatoire - LESIA

2



**OPD drift : 20 nm RMS** over one hour

**Temperature fluctuation : 0.01 °C RMS** 

Flux injection : highly stable

THE UNIVERSITY OF

Observatoire



GeorgiaStateUniversity









### The CHARA/NPOI Science Meeting 2019 Observables & Setups



| Observable          | Computation                                | Integr.       | $N_{Gravity}$ | $N_{Spica}$ |
|---------------------|--------------------------------------------|---------------|---------------|-------------|
| Flux                | extracted from the P2VM                    | $N_{\lambda}$ | 4             | 6           |
| Visibility          | extracted from the P2VM providing          | DIT           | 6             | 15          |
|                     | complex coherent flux (unnormalized V)     |               |               |             |
| Phase delay         | derived from the P2VM                      | $N_{\lambda}$ | 6             | 15          |
| (PD)                | correction of dispersion (phase curvature) |               |               |             |
|                     | no unwrapping                              |               |               |             |
| Phase variance      | deduced from the P2VM + pixels variance    | 5 DIT         | 6             | 15          |
| (SNR)               | variance of the coherent flux amplitude    | $N_{\lambda}$ |               |             |
| Group delay         | derived from the P2VM                      | 40 DIT        | 6             | 15          |
| (GD)                | correction of dispersion (phase curvature) |               |               |             |
|                     | no unwrapping                              |               |               |             |
| Closure phase       | argument of the averaged bispectrum        | $N_{\lambda}$ | 4             | 20          |
|                     | estimated from PD and GD                   | 300 DIT       |               |             |
| Independent closure |                                            |               | 3             | 10          |

| Item               | $N_{Gravity}$ | $N_{Spica}$ |
|--------------------|---------------|-------------|
| Degrees of freedom | 3             | 5           |
| Inputs             | 4             | 6           |
| Outputs            | 24            | 60          |
| V2PM               | 10x24         | 21x60       |
| P2VM               | 24x10         | 60x21       |
| Spectral channels  | 5             | 5           |
| Polarization       | 2             | 1           |











8



### Lessons learnt from GRAVITY-FT



- **Dual control**: Group Delay (GD) & Phase Delay (PD) based on a Kalman filter
  - The GD controller is robust (sliding average of 40 DIT) for providing coherencing
     Group delay Ψ
     by multiples of λ.



• The PD controller is fast for providing cophasing



- In case of <u>high SNR</u>, the Kalman filter determines and predicts the states of both atmospheric and vibrational perturbation for optimal correction at a fraction of  $\lambda$ .
- In case of <u>low SNR</u>, the Kalman filter relies on its predictive model which, in the worst case, can be as simple as a constant value.

















## Injected piston in H wrt R band



- Definition:
  - Piston across a pupil plane : Piston\_t = average( atan[Pupil\_t] )  $\lambda/2\pi$
  - Piston injected into a SM fiber :**Piston\_t = atan (**  $\int$  **Pupil\_t x Gaussian dxdy )** \* $\lambda/2\pi$
  - Gaussian = fundamental mode of the SM fiber, transposed in the pupil plane

- Issues :
  - RMS(Pupil\_t) is worst in R band than in H band
  - Injected piston is a function of the wavelength

• Results: TBD...

















### What's next ?



- Integration and test of the IO chip in the testbed
  - IO chip to be aligned with the V-groove and the micro-lenses array
  - IO chip characterization
  - P2VM calibration
  - Phase sensor
  - OPD controller
  - State Machine
  - Servo-Loop
- Development and test of a fringe tracking sensor & control system
  - Group delay control
  - Phase delay control (PID first, Kalman filter next)
- *Injected* piston in H *wrt* R band (to be continued...)













