Science Opportunities with the CHARA Array

Mercury transiting the Sun in 2019

CHARA interferometry, coupled with additional data (spectra, photometry, etc.), enable precise measures of stellar properties

Science Opportunities with the CHARA Array

Important to know!

 $0.5 \lambda / B$

2. Sun at 10 pc has Θ diam = 0.9 mas

'ESSmag

TESS All Sky Survey
(Candidate Target List v. 8.0)
... will provide continuous photometry
for transits, activity, rotation periods,
asteroseismology, etc.

Right Ascension [hr]

-20

-40

-60

-80

Distance (pc)

Radius [Rs)

Effective Temperature

Rapidly Rotating Stars

Jeremy Jones, CHARA Data Scientist

Why Rapid Rotators? And What Counts as a Rapid Rotator?

Alderamin (Zhao et al. 2009)

- Stars with vsini > 100 km/s
- Typically early-type stars
- Rotation causes oblateness
- Oblateness causes temp. differential
- Interferometry can distinguish v from i in vsini
- Interesting physics:
 - Diffusion vs. rotational mixing (no convection)
 - Evolves differently from slowly rotating stars
 - Inclination affects apparent lum/temp
 - Defining temp. differential (gravity darkening)

The Early Work Paper 1 – McAlister et al. 2005 Regulus

The Early Work Paper 1 – McAlister et al. 2005 Regulus

The Early Work

Paper I

Paper III

Paper VII (using Fluor)

The Early Work Vega

⁽Aufdenberg et al. 2006)

MIRC Work – 4T days

Regulus (Che et al. 2011) RasalhagueAltairAlderamin(Zhao et al. 2009)(Monnier et al. 2007)(Zhao et al. 2009)

Bet Cas (Che et al. 2011)

My Work – Ursa Major Moving Group

Merak

Megrez

Phecda

UMa Work

Simultaneous Photometry/Visibility Model Fitting

• All visibilities on the 1st lobe

Jones et al. (2015)

Alcor

My Work – kappa Andromedae

Recent and Upcoming Work

The ROTIR Code (Baron et al.)

Why Rapid Rotators?

Alderamin (Zhao et al. 2009)

- Rotation causes oblateness
- Oblateness causes temp. differential
- Interferometry can distinguish v from i in vsini
- Interesting physics:
 - Diffusion vs. rotational mixing (no convection)
 - Evolves differently from slowly rotating stars
 - Inclination affects apparent lum/temp

Beyond Snapshot Imaging Advanced image reconstruction

• Polychromatic & Dynamical imaging

• Model-fitting + imaging

• Imaging on Spheroids

Atoire Max-Planckfür Radioast

CHARA SUMMER WORKSHOP 2020

Model-fitting + Imaging

• SPARCO: the stellar central source is analytically modeled while its environment is imaged; both presumed to follow chromatic power laws

CHARA SUMMER WORKSHOP 2020 Dynamical Imaging

Johnson et al., 2017 – ApJ 850:172

SUMMER WORKSHOP 2020

Imaging on Spheroids

SURFING

Affine-invariant code developed by John Monnier

SURFING reconstruction of zet And Roettenbacher et al., Nature, 2016

Imaging on Spheroids

ROTIR Gradient-based code developed by Baron & Martinez

Imaging on Roche lobes, rapid rotators, binaries

ROTIR reconstruction of lam And Martinez at al. in prep., 2020

oire Max-Planck-In für Radioastron

Visibility Modulation Binaries

- Fringe packets for the two components overlap
- Visibility amplitude and closure phase vary periodically
- Separation between peaks
 - binary separation
- Minimum in visibility curve
 - flux ratio

Binary Frequency

CHARA Multiplicity Surveys: Solar-type stars (Raghavan et al. 2010); Massive O-stars (Lanthermann et al., in prep)

Dynamical Masses

• Visual + spectroscopic orbits

- Dynamical Masses
- Orbital Parallax
- 1% precision
- Calibration of stellar evolutionary models
- Mass-radius and massluminosity relationships

Lester et al. (2020)

O-Star Triple: Sigma Orionis Aa, Ab-B

Image: http://astronomy.kez.nu

- Dynamical masses of three O-stars
- Precise distance to the sigma Orionis cluster
- Orbits are not coplanar

- Pair of G-dwarfs in very eccentric orbit
- P = 332 days, e=0.93
- Tertiary M-star might be responsible for driving eccentricity through the Kozai-Lidov mechanism

Farrington et al. (2018)

High Contrast Companions

- High contrast: MIRC/MIRC-X
 - Separations 0.5 50 mas
 - $\Delta H < 6 \text{ mag}$
- RS CVn: spotted active star
 - Evolved primary and subgiant/dwarf companion

Cepheids

 Calibration of the Leavitt Period-Luminosity Law

Mass Transfer

- Mass transfer in interacting binaries
- Tidal distortion of mass donor – Roche lobe filling
- Thick disk around mass gainer

Beta Lyrae: P=13d, a=0.87 mas Zhao et al. (2008) Algol: P=2.9d, a=2.2 mas Baron et al. (2012)

Binarity in Be Stars

Mourard et al. (2016)

• Spun up Be star orbiting stripped down remnant companion (neutron star, white dwarf, helium star)

Transiting Disk: Epsilon Aurigae

UT2010Feb18

Kloppenborg et al. (2010, 2015)

Transient Events

Nova Explosions: Angular expansion

Gravitational Microlensing: Resolve lensed image

Outbursting Be Star: Formation of Disk

Klement et al. (in prep)

Schaefer et al. (2014)

Dong et al. (2014)

Stellar mass loss: high luminosity

Neilson (2013, arXiv:1309.4115)

Massive star winds

FIG. 1 – Left: Isodensity contours for winds of rotating stars (Dwarkadas & Owocki 2002). Middle: P Cygni (Richardson et al. 2013). Right: Nebula around WR 136 (Moore et al. 2000).

FIG. 2 – η Carinae (NASA, ESA); SN1987A (NASA, ESA); Betelgeuse (Kervella et al. 2011).

Be star disks

FIG. 3 – Models of the disk of γ Cas (Gies et al. 2007); the one-armed spiral density wave of ζ Tau (Carciofi et al. 2009); a gap created by the companion of HR 2142 (Peters et al. 2016).

Asymptotic Giant Branch & RSGs

Hubble Space Telescope image of the AGB star U Cam [ESA/Hubble]

FIG. 4 – 3D model of intensity in a water vapor band (Wittkowski et al. 2016); clumpy dust emission around W Hya (Ohnaka et al. 2017); ALMA ¹²CO map of OH30.1-0.7 (Decin et al. 2019).

Binary stars

FIG. 5 – The dust pinwheel formed by wind-wind collision in WR104 (Tuthill et al. 2008); model RLOF and circumbinary disk (MacLeod et al. 2018); double-torus of RY Scuti (Smith et al. 2011).

Astro2020 Science White Papers

- AGN (Kishimoto) <u>2019BAAS...51c.156K</u>
- Asteroseismology (Huber) 2019BAAS...51c.488H
- Binaries (Schaefer) 2019BAAS...51c.483S
- Evolved stars (Ridgway) 2019BAAS...51c.332R
- Exoplanets (Monnier) 2019BAAS...51c.514M
- Mass loss (Gies) 2019BAAS...51c.171G

- Pulsators (Creech-Eakman) 2019BAAS...51c.196C
- Transients (Schaefer) 2019BAAS...51c.502S
- YSOs (Monnier) <u>2019BAAS...51c.498M</u> (Isella) <u>2019BAAS...51c.174I</u>
- Imaging (Roettenbacher) <u>2019BAAS...51c.181R</u>
- Radii (van Belle) 2019BAAS...51c.381V

Observing requests

- Next opportunity: 2021A Semester (March-July)
- Proposals due October 1, 2020
- CHARA Collaboration
 http://www.chara.gsu.edu/observers/applying-for-chara-time
- NSF's NOIRLab (everyone else) http://ast.noao.edu/observing/call-for-proposals-2020b

Thank you!

- Fabien Baron
- Tyler Gardner
- Daniel Huber
- Jeremy Jones
- Robert Klement
- Katie Lester

- Arturo Martinez
- Gail Schaefer
- Theo ten Brummelaar
- Russel White
- CHARA staff
- CHARA collaboration

http://www.chara.gsu.edu/workshops/chara-summer-seminar-2020