The CHARA Science Meeting 2021

Simulations for CLASSIC++

Marc-Antoine Martinod

University of Sydney

Simulations for CLASSIC++

GeorgiaStateUniver

CLIMB

- H or K band
- Combines 2 (CLASSIC) or 3 (CLIMB) telescopes
- CLASSIC
 - Typical limiting magnitude: 7
 - Best limiting magnitude achieved: 8.5
- CLIMB
 - Typical limiting magnitude: 6
 - Best limiting magnitude achieved: 7
- Spectral resolution:

GeorgiaStateUniver

- Broadband
- $\lambda_0 = 1.673 \ \mu m$ $\Delta \lambda = 0.285 \ \mu m$ (H band)

Dbservatoire LESIA

National Iniversit

THE UNIVERSITY OF SYDNEY

Observatoire

CLASSIC++

Observatoire

- Upgrade of CLASSIC/CLIMB for more sensitivity
- Funds for a new detector (e.g. C-Red 1)
- Is there a way to increase the SNR of the visibility even more?
- Let's do some simulations then
- 2 designs to test

GeorgiaStateUnive

- Pupil plane with temporal encoding of the fringes •
- Image plane with spatial encoding of the fringes and . spectral dispersion

oservatoire

Fig. 2. Schematic of the optical layout of the CLIMB beam combiner

Specifications of the simulations

- Operates in H band
- Photometric model and throughput: $N_{ph} = 10189 \ 10^{-\frac{mag}{1.071}}$ (Empirical model for CLASSIC)

THE UNIVERSITY OF SYDNEY

Observatoire

- Field of view
 - Pupil plane: 0.78"/pixel (like CLASSIC)
 - Image plane: width of one Airy disk at the shortest wavelength
- Camera: C-Red One
 - Characteristics based on experiments carried on MIRC-X and datasheet
- Atmosphere
 - Kolmogorov phase mask (XAOSIM, F. Martinache)

bservatoire

Simulations for CLASSIC++

Specifications of the simulations

- Pupil plane design
 - Fringe encoding frequencies: $f_0, 2f_0, 3f_0, f_0 = \frac{750}{9} = 83.3$ Hz
 - Sample time of 1.33 ms (=1/750)
 - No spectral dispersion
 - $N_{AP} = \frac{9L}{\lambda} = 538$ samples for scan length $L = 100 \ \mu m$, in H band (3 pixels per "fastest" fringe)
 - One full scan done in 0.72 seconds
 - Fringe packet is 20 μm so only 20% of the scanning time is spent in the fringes

bservatoire LESIA

- Image plane design
 - Fringe encoding: 2D-4D-6D
 Leads to 5, 10 and 15 fringes → 45 pixels to sample the fringes (3px/fringe)
 - Sample time = $12 \text{ ms} (1/f_0)$
 - Spectral dispersion $R = \frac{L}{2\lambda_0} = 30$, Spectral channel width of 56 nm \rightarrow 5 pixels across H band
 - Total number of pixels for one sample: 225 pixels
 - Integration time = 0.72 s ie integration of 60 samples.
 - Reduction of RON by $\sqrt{60}$.

THE UNIVERSITY OF SYDNEY

Observatoire

The CHARA Science Meeting 2021

Doing the simulations

- Pupil plane: generating the scan, extracting visibility and SNR based on CLASSIC pipeline
- Image plane: incoherent integration, extraction of fringe peak and SNR based on FRIEND pipeline

GeorgiaStateUnivers

Pupil plane (\uparrow Scan / \downarrow DSP)

Image plane (\uparrow Scan / \downarrow DSP)

The CHARA Science Meeting 2021

Results

- Pupil plane
 - Lower limiting magnitude (Hmag=9.2)
 - Not same SNR on the baselines
 - Hardly scalable to more baselines
 - Fewer changes in the optical layout
 - Low risk
- Image plane
 - Higher limiting magnitude (Hmag = 10)
 - Consistent SNR on all baselines
 - Looking at fringes all the time
 - Scalable to more baselines
 - New optical layout
 - Risker than pupil plane
- Image plane chosen (cf Peter Tuthill's talk about the design)

GeorgiaStateUniversity

Simulations for CLASSIC++

ANNEX: Simulating Atmospheric Turbulence

- Creation of atmospheric turbulence
 - Kolmogorov mask for phase turbulence
 - Independent phase mask per pupil
 - Translation of phase mask during time of the observation (masks large enough to avoid wrapping)

Observatoire

- Parameters:
 - Reproduce a visibility of 0.75 in K band
 - $r_0 = 3.35$ cm and wind speed v = 15 m/s

bservatoire

Adapted from XAOsim tools (F. Martinache)