The CHARA/SPICA Science Overview

The CHARA/SPICA Science Group

- K. Belkacem, T. Boyajian, O. Creevey, S. Deheuvels, A. Domiciano, D. Graczyk, S. Kraus,
- Y. Lebreton, R. Ligi, D. Mourard, N. Nardetto, C. Soubiran, M. Wittkowski,
- bout 65 other colleagues (see https://lagrange.oca.eu/fr/spica-team)

CHARA/SPICA Science Overview

CHARA/SPICA capabilities in a nutshell

- **Facts:** Up to now, ~220 different stars have their angular diameter precise at the 1% level • based on different instruments (JMDC catalogue, Duvert+16): O (0), B (3), A(9), F(22), G(38), K(89), M(35 mostly giants), C(25).
- CHARA/SPICA is an « angular diameter machine »: ٠
 - ➤ In 3 years (80 nights per year), we plan to derive the angular diameter of 800 stars with a 1% precision and do images of about 200 stars.
 - ▶ In several years, CHARA/SPICA will multiply by ten the number of stars with high precision angular diameter.
 - Importantly, CHARA/SPICA can provide a homogeneous set of data for a large amount of stars all over the HR diagram from O to M stars.
- CHARA/SPICA is an « image box »: CHARA/SPICA can study stellar activity (i.e. binarity, • rotation, wind/environment, chromosphere) and limb-darkening all over the HR diagram

Objective 2: Observation of a large and homogeneous sample of asteroseismic and interferometric targets (~275 targets)

CHARA

Objective 3: Calibration of Surface Brightness Color Relations (SBCR) all over the HR diagram (~325 targets)

SBCR of early-type stars: → distance determination of M31/M33 Synergy with Araucaria project: (ERC Synergy) Ho at 1%

PhD of A. Salsi

- SBCR for late-type stars based on JMDC and CHARA/VEGA; difference of SBCR between type and classes (Salsi+19)
- SBCR for early-type stars based on CHARA/VEGA (Salsi+20, submitted)

GeorgiaStateUnivers

• Theoretical study on-going.

From bright to faint stars

SBCR of late type stars:
> distance determination
of SMC/LMC (Ho)
> faint PLATO targets
Synergy with PLATO space mission

Objective 4: Limb-darkening survey over the HR diagram WP11 (~160 targets)

▶ for more precision / accuracy on the derived angular diameters ▶ for studying the stellar atmosphere models

Example 1: K4, mV=4, \theta=3.53 mas (1 observation)

Example 2: B0, mV=1, θ =1.1mas (1 observation)

Georgia<u>StateUniversi</u>

Dwarfs	Challouf			-	Salsi-1		Salsi-2			
SpTy	0	BO	AO	F5	G7	K4	MO	M3	M4	
V // V-K	-2	-1	0 1		2	3	4	5	6	
0	0,10	1,00	3,35	6,28	11,82	22,25	39,94	70,70	125,14	
1	0,06	0,63	2,11	3,96	7,46	14,04	25,20	44,61	78,96	
2	0,04	0,40	1,33	2,50	4,71	8,86	15,90	28,14	49,82	
3	0,02	0,25	0,84	1,58	2,97	5,50	10,03	17,76	31,43	
4	0,02	0,16	0,53	0,99	1,87	3,53	6,33	11,20	19,83	
5	0,01	0,10	0,33	0,63	1,18	2,23	3,99	7,07	12,51	
6	0,01	0,06	0,21	0,40	0,75	1,40	2,52	4,46	7,90	
7	0,00	0,04	0,13	0,25	0,47	0,89	1,59	2,81	4,98	
8	0,00	0,03	0,08	0,16	0,30	0,56	1,00	1,78	3,14	
9	0,00	0,02	0,05	0,10	0,19	0,35	0,63	1,12	1,98	
10	0,00	0,01	0,03	0,06	0,12	0,22	0,40	0,71	1,25	

different SBCRs dwarfs/giants

KYOTO UNIVERSITY

ETER

Giants	0	hallou	ıf	1	Salsi-1	ener denne	Salsi-2			
SpTy	0	BO	AO	F5	G7	K4	MO	M3	M4	
V // V-K	-2	-1	0	1	2	3	4	5	6	
0	0,24	1,00	3,16	6,72	11,79	20,68	36,41	62,26	106,46	
1	0,1	0,69	1,99	4,24	7,44	13,05	22,97	39,28	67,17	
2	0,10	0,44	1,26	2,68	4,69	8,23	14,49	24,79	42,38	
3	0,06	0,27	0,79	1,69	2,96	5,20	9,15	15,64	26,74	
4	0,04	0,17	0,50	1,07	1,87	3,28	5,77	9,87	16,87	
5	0,02	0,11	0,32	0,67	1,18	2,07	3,64	6,23	10,65	
6	0,02	0,07	0,20	0,42	0,74	1,30	2,30	3,93	6,72	
7	0,01	0,04	0,13	0,27	0,47	0,82	1,45	2,48	4,24	
8	0,01	0,03	0,08	0,17	0,30	0,52	0,91	1,56	2,67	
9	0,00	0,02	0,05	0,11	0,19	0,33	0,58	0,99	1,69	
10	0,002	0,011	0,032	0,067	0,118	0,207	0,364	0,623	1,065	

National

Observatoire

THE UNIVERSITY OF

➢ for more precision/accuracy on the derived angular diameters. Improve the quality control of CHARA/SPICA

Observatoire LESIA

quantify the impact of stellar activity on the SBCR

GeorgiaStateUniversi

constraints on stellar evolution models

The CHARA/SPICA survey: summary

((E))

Observatoire

THE UNIVERSITY OF

Australian National University

KYOTO UNIVERSITY

Synergy CHARA/SPICA survey / PLATO space mission

l'Observatoire LESIA

NOIR Lab

Georgia State University

Synergy between CHARA/SPICA and the Araucaria Project of

distance determination in the local group

A distance to the Large Magellanic Cloud that is precise to one per cent

G. Pietrzyński^{1,2*}, D. Graczyk^{1,2,3}, A. Gallenne^{4,5}, W. Gieren², I. B. Thompson⁶, B. Pilecki¹, P. Karczmarek⁷, M. Górski², K. Suchomska⁷, M. Taormina¹, B. Zgirski¹, P. Wielgórski¹, Z. Kołaczkowski^{1,8}, P. Konorski⁷, S. Villanova², N. Nardetto⁵, P. Kervella⁹, F. Bresolin¹⁰, R. P. Kudritzki^{10,11}, J. Storm¹², R. Smolec¹ & W. Narloch¹ Nature, 2019, 567, Issue 7747, p.200-203

20 late-type eclipsing binaries in LMC

 Result used by SHOES project: 1.8% on Ho (Riess+2021)

Aim of CHARA/SPICA:

• provide a SBCR for early-type stars with a 2% precision and accuracy (i.e. taking into account stellar activity effects)

Aim of Araucaria Project (ERC Synergy 2020-2025):

- derive the distance to M31/M33 with a few percents precision
- derive Ho independently from SHOES project at the 1% level

GeorgiaStateUniversit

bservatoire LESIA

Synergy between CHARA/SPICA and the PLATO space mission

Direct CHARA/SPICA contribution into **WP122300** « Fundamental stellar parameters » (leader M. Bergemann, Germany) **part of WP122** « Non-Seismic diagnostics and model atmospheres » (leader T. Morel, Liège) **part of WP120** « Stellar Science » (leader Marie Jo Goupil, Paris).

Implication of CHARA/SPICA into **WP125500** « Benchmark stars for PLATO » (leader O. Creevey)

bservatoire LESIA

	2022	2024	2027
	Start of the CHARA-SPICA survey	PLATO fields are known	First PLATO data
Direct measurements of CHARA/SPICA WP122300-WG3 Resp. D. Mourard From bright to faint stars	Before operation : imp <u>CHARA/SPICA meas</u> PLATO pipeline (SAP the methodology	plementation of <u>urements</u> into the P); validation of	During operation: CHARA/SPICA follow-up (currently at least 400 targets in PIC catalogue observable by CHARA/SPICA)
CHARA/SPICA SBCR WP122300-WG4 Resp. Nardetto	Before operation : Cal CHARA/SPICA SBCI <u>SBCRs</u> into the PLATO validation of the metho catalogue or benchmar	ibration of R. Implementation of O pipeline (SAPP); odology using PIC k stars (Gent+21 in prep)	During operation : use of CHARA/SPICA SBCR in the PLATO pipeline

Observatoire

THE UNIVERSITY OF SYDNEY

Status of SPICA-database

- list of stars almost ready
- *on-going:* definition of priorities
- *on-going:* definition of the strategies
- *on-going:* management of redundancies/synergies
- *on-going:* implementation of the SPICA database and associated tools

GeorgiaStateUnive

TARGET_PROGNAME	WP01	WP02	WP03	WP07	WP08	WP09	WP10	WP11	WP12a	WP12b	WP13
str5	int64										
WP01	31	1	0	5	0	0	0	2	0	0	1
WP02	1	285	0	151	0	0	0	0	0	0	2
WP03	0	0	200	4	0	0	0	0	0	0	1
WP07	5	151	4	474	0	2	0	0	0	0	145
WP08	0	0	0	0	254	24	0	0	1	0	4
WP09	0	0	0	2	24	901	0	13	21	3	4
WP10	0	0	0	0	0	0	29	0	0	0	0
WP11	2	0	0	0	0	13	0	583	10	39	75
WP12a	0	0	0	0	1	21	0	10	26	0	0
WP12b	0	0	0	0	0	3	0	39	0	88	7
WP13	1	2	1	145	4	4	0	75	0	7	488

bservatoire

Reminder:
WP1: exo
WP2: astero/dwarfs
WP3: astero/(sub)-giants
WP7: SBCR
WP8: binaries
WP9: rotation
WP10: YSOs
WP11: LD
WP12: wind & environment
WP13: metal poor stars (Galactic
Archeology)

THE UNIVERSITY OF

Observatoire

Take home message

- CHARA/SPICA survey is in preparation : ~1000 stars observed in 2022/2023/2024
- 2 main objectives:
 - Fundamental parameters of stars and planets
 - Distance Scale (Ho)
- In parallel, development of new tools (SPICA database, different tools to manage the survey)

Observatoire

• Need of about ~80 nights per year during 3 years

Observatoire

- CHARA/SPICA will have many additional programs (NOAO)
- Interested ? Contact us !

