

P. Berio, L. Bigot, D. Bonneau, M. Challouf, O. Chesneau, J.M. Clausse, O. Creevey, O. Delaa, A. Domiciano, N. Jamialahmadi, R. Ligi, F. Millour, A. Meilland, F. Morand, D. Mourard, N. Nardetto, <u>K. Perraut</u>, E. Saldanha, A. Salsi, A. Spang, P. Stee, I. Tallon-Bosc

on behalf the VEGA team

oservatoire

Observatoire

VEGA in a few important dates

- May: 1st email exchanges 2005
 - November: 1st visit on the Mountain
- Green light after the Tucson 2-year CHARA Science Meeting 2006
- August: 8 boxes weighting about 1200 kg sent to Mt Wilson 2007
 - September, 30th: **1st 2T fringes** (after 3 weeks of integration)

bservatoire

- 2008 - October: **3T fringes**
- Summer: First remote operation 200
- May: simultaneous CLIMB and VEGA operation 2010
 - Oct, 12th: **4T fringes together with MIRC**
- **2012** Upgraded detectors and group delay tracking

THE UNIVERSITY OF

Observatoire

Observatoire

THE UNIVERSITY OF SYDNEY

VEGA operation in a few figures

- 509 nights with recorded data
- 770 stars
- 8500 observations

During these 12 years, as other interferometric instrumentations, VEGA has reached a routine observing mode, allowing to:

- increase the samples
- be open to a larger community, to non-interferometrists

bservatoire

Statistical studies

Advanced modelling through collaborations

47 refereed papers

CHARA

The CHARA Science Meeting 2021

EXOPLANET HOST STARS

Ligi+2012, 2016, 2019; Crida+2018, 2019; Bonnefoy+2018, Borgniet+2019 MULTIPLE/HIERARCHIC SYSTEMS

Nemravova+2013, 2016; Farrington+2014

Accurate fundamental parameters

ro(Ap) STARS

Perraut+2011, 2013, 2015, 2016, 2020; Cunha+2013, Romanovskaya+2019, Deal+2021 (in revision)

SURFACE-BRIGHTNESS COLOR RELATIONS

Challouf+2014, 2017; Salsi+2020, 2021 (in prep); Nardetto+2020

GAIA BENCHMARK

Creevey+2015

VEGA Science Review

CEPHEIDS

Nardetto+2011.2016

ASTEROSEISMIC STARS

Bigot+2011; Karovicova+2018

l'Observatoire LESIA

Exoplanet host stars

- Characterization of exoplanets relies on that of their host star
- But many stellar internal parameters poorly constrained

Combine ρ_* and R_* to derive M_* and refine age

Generalized Bayesian inference analysis; correlations

Scientific objective:

[Ligi+2019, Borgniet+2019, Crida+2018,2019]

 Obtain exoplanetary parameters accurate enough to constrain their internal structures

[Ligi+2012, Ligi+2016, Bonnefoy+2018]

Constraining the exoplanet properties

- Planetary mass, radius, and density
 - Atmosphere and interior composition
 - Formation scenario
- Improved detection limits

(ro)Ap stars: testing the physics

Excitation mechanism of pulsation modes in roAp

[Cunha+2013; Romanovskaya+2019; Deal+2021, in revision]

- Deriving a Bolometric Correction for Ap stars
- Benchmarking the self-consistent atmosphere models
- Looking for trends with magnetic field strength, age, ...

Surface-Brightness Color-Relations

Objective: deriving accurate angular diameters for stars unreachable by interferometry

- The calibration of the cosmic distance scale through Eclipsing Binaries
- The fundamental parameters of PLATO targets

PLATO mission

VEGA sample:

- 14 late-type
- 18 early-type

Method based on selection criteria:

- **stellar characteristics** (rejection of multiplicity, variability, etc)
- **interferometric** (high visibilities)
- photometric (rejection of high infrared-K uncertainty)

Surface-Brightness Color-Relations

YOUNG STARS

Perraut+2010, 2016; Benisty+2013; Ellerbroek+2015; Jamialahmadi+2015; Mendigutia+2017

Mourard+2012

Kinematics and environments

The CHARA Science Meeting 2021

SPECTRO-IMAGING

CHROMOSPHERIC ACTIVITY

Berio+2011

Mourard+2015

Bonneau+2011; Mourard+2018; Broz+2020

βLYR

SUPERGIANT WINDS

Chesneau+2010

Delaa+2011, 2013; Meilland+2011; Smith+2012; Stee+2012; de Almeida+2019

The β Lyr eclipsing and interacting binary

- Period: 12.9 d
- Nearly edge-on
- Donor: B6-8 II
- Gainer: a hidden B star in the opaque disk

β Lyr: a multi-technique and multi- λ campaign

VEGA observables

3.0 Ηα 2.5 2.0 ntensity 1.5 0.5 0.0 May Marce 1.0 Ampl. 0.8 0.6 Diff. 0.4 0.2 0.0 100 Phase 50 0 Diff. -50-100650 655 660 Lambda(nm)

VEGA Science Review

- NPOI + CHARA/MIRCx (6T) + CHARA/VEGA (2T/3T + multi λ) in 2013
- Spectroscopic and photometric contemporaneous + archive data

β Lyr: global modelling

GeorgiaStateUniversit

bservatoire

LESIA

Upgraded version of ShellSpec

Emission formed in:

Observatoire

THE UNIVERSITY OF

- an extended atmosphere of the disk
- 2 perpendicular jets expanding at ~ 700 km/s

Vational

- a symmetric shell with the radius \sim 70 R $_{\odot}$

[Broz+2020 (highlight A&A)]

ETER

Geometrical extent of K giant chromospheres

Observatoire

THE UNIVERSITY OF SYDNEY

- Fundamental parameters: Teff, L, R, mass
- Ratio of radius chromosphere/photosphere in
 - $\circ \ \text{H}\alpha$
 - o Call triplet lines (@849nm, @854nm and @866nm)

Chromosphere extents range between 16% to 47% of R*

VEGA sample (7 giants)

HD	Name	$\theta_{\rm LD}$	$f_{ m bol}$	$T_{\rm eff}$	L/L_{\odot}	R/R_{\odot}
		(mas)	$(10^{-6} \text{ erg s}^{-1} \text{ cm}^{-2})$	(K)		
4128	β Ceti	5.288 ± 0.075	5.10	4838 ± 70	139.1 ± 7.0	16.78 ± 0.25
6805	η Ceti	3.698 ± 0.160	1.64	4356 ± 55	74.0 ± 3.7	15.10 ± 0.10
98430	δ Crateris	3.667 ± 0.022	1.66	4408 ± 57	171.4 ± 9.0	22.44 ± 0.28
127665	ρ Bootis	4.090 ± 0.031	1.76	4298 ± 56	131.9 ± 6.8	21.57 ± 0.25
161096	β Ophicus	4.606 ± 0.045	3.04	4621 ± 62	63.4 ± 3.2	12.42 ± 0.13
169414	109 Herculis	3.223 ± 0.034	1.17	4334 ± 59	50.7 ± 2.7	12.63 ± 0.22
216228	ι Cephei	2.646 ± 0.048	1.28	4831 ± 74	49.6 ± 2.5	10.05 ± 0.18

bservatoire

LESIA

Fig. 4. HR diagram of the program stars and comparison with evolutionary track models for different masses. *Top*: [Fe/H] = 0.06; *bottom*: [Fe/H] = -0.35.

[Berio+2011]

16

GeorgiaStateUniver

Spatial structures of the chromosphere

- Signature of differential phase showing the presence of asymmetries in the chromosphere
- Semi-empirical NLTE model of β Ceti derived by fitting the Ca II triplet line cores:
 - Lines formed at the mean chromosphere temperature
 - Ca II/849 nm line formed significantly deeper within the atmosphere
 - Limb-darkening law of Call triplet lines similar to the Sun

Ca II triplet

Take away messages and perspective

- VEGA: real niches (high angular resolution, visible range, medium and high spectral resolution) well exploited
- 47 papers published + several papers to come on large samples:
 - Comparison PAVO/VEGA
 - Metal-poor and asteroseismic sources (~ 40 stars)
 - Be stars (34 stars)
- Some studies have been limited by its sensitivity (YSOs)
- Lessons learned: operation, statistical approaches, ...

VEGA disassembly (hopefully)

Many thanks to the whole CHARA group!

SPICA

THE UNIVERSITY OF SYDNEY