

Optical and Infrared Interferometry

John Monnier University of Michigan

2023 CHARA Data Workshop

Outline

- General Principles of Interferometry
- Aperture Synthesis Imaging
- Spotlight on Optical Interferometry
- Readings
 - Volume 2 of Planets, Stars and Stellar System
 - Thompson/Moran/Swenson Chap 2-3, 10-11
 - Monnier Review 2003
 - Michelson Summer School 1999 Notes
 - https://core.ac.uk/download/pdf/79046071.pdf
 - Eisenhauer, Monnier, Pfuhl ARAA 2023

2023 CHARA Data Workshop

Angular Resolution

J.D. Monnier: Introduction to Optical and Infrared Interferometry Astronomy Van Cittert_7e

van Cittert-Zernike Theorem

Binary Star Example 2 • Star 1 Fringe + Star 2 Fringe = Combined Fringes

Eisenhauer, Monnier, Pfuhl 2023

Complex Visibility

$$\tilde{\mathcal{V}}\left(\frac{B_{\text{proj}}}{\lambda}\right) = \int I_{\lambda}(\delta) \cos(2\pi \frac{B_{\text{proj}}}{\lambda}\delta) d\delta$$

One Fourier Component of the Image

Basics

•The <u>amplitude</u> of fringe corresponds to Fourier amplitude of a single Fourier component of brightness distribution

Normalized to flux, $0 \rightarrow 1$

For data analysis reasons, we often fit to V^2 , not the amplitude

- •The phase corresponds to the Fourier phase
- •You need amplitudes & phases for imaging
 2023 CHARA Data Workshop

Dyck (Michelson Summer School Notes 2000)

- 2023 CHARA Data Workshop

Radiative Transfer Modeling

2023 CHARA Data Workshop

Observed

Phase

(1-2-3)

J.D. Monnier: Introduction to Optical and Infrared Interferometry

Atmosphere

The "Closure Phase" Is Not Corrupted

- 0° /180° for "centro"-symmetric objects
 - E.g., uniform disks, rings, elliptical disks, equal binaries
 - But otherwise not easy to interpret
- Not dependent on position on sky, so therefore no astrometry
- Related to 'skewness' of a distribution
- Immune to most calibration errors, so very robust!

Monnier (Michelson Summer School Notes 2000)

+Φ (3-1)

Intrinsic

 $\Phi(1\text{-}2) = \Phi_{-}(1\text{-}2) + [\phi(2)\text{-}\phi(1)]$

 $\Phi(2-3) = \Phi(2-3) + [\phi(3)-\phi(2)]$

 $\Phi(3-1) = \Phi(3-1) + [\phi(1)-\phi(3)]$

Closure = $\Phi_{0}(1-2)+\Phi_{0}(2-3)$

Closure Phase is a Good Observable

Pair-wise Combination at IOTA

How Much Phase Information?

Closure Phases are not all independent from each other.

Number of Fourier Phases (N) = (N)(N-1)

$$\binom{N}{2} = \frac{(N)(N-1)}{2}$$

Number of Independent Closure Phases

$$\binom{N-1}{2} = \frac{(N-1)(N-2)}{2}$$

Number of Telescopes	Number of Fourier Phases	Number of Closing Triangles	Number of Independent Closure Phases	Percentage of Phase Information
3	3	1	1	33%
7	21	35	15	71%
21	210	1330	190	90%
27 50	$\frac{351}{1225}$	2925 19600	325 1176	93% 96%

Monnier (Michelson Summer School Notes 2000)

- 2023 CHARA Data Workshop

Astronomy

J.D. Monnier: Introduction to Optical and Infrared Interferometry

Basics of Interferometric Imaging

- How much data do you need?
 - The number of filled pixels ~> number of independent visibility measurements (degrees of freedom argument)
- What range of baselines?
 - Longest baselines sets your highest resolution
 - Diffraction-limit of individual telescope usually sets the maximum field-ofview of the interferometer
- Dynamic Range expected to be 1000:1 to 100:1
- How can you get enough data with only a few telescopes?

$$\mathrm{FT}(I(\alpha,\delta)) = \tilde{\mathcal{V}}(u,v) = \int I_{\lambda}(\alpha,\delta) e^{-2\pi i (\vec{u,v}) \cdot (\vec{\alpha,\delta})} d\alpha d\delta$$

۷

L

(u,v) coverage

Earth Rotation Aperture Synthesis

Very Large Array (VLA)

2023 CHARA Data Workshop

Very Large Array (VLA)

UV coverage: VLA (27) vs CHARA (6)

Astronomy

J.D. Monnier: Introduction to Optical and Infrared Interferometry

Deconvolution & Aperture Synthesis

- To reconstruct an image from sparsely sampled (u,v) data, one must interpolate into regions where data does not exist.
 - This is Identical to multiplying the true Complex Visibility by an Aperture Function.
- Since Multiplication in the (u,v) space is the same as Convolution in image space (see Convolution Theorem), the problem can be re-cast as a Deconvolution problem.
- Popular methods of Deconvolution include CLEAN and the Maximum Entropy Method.

Deconvolution with CLEAN

- 2023 CHARA Data Workshop

Forward Model Example: Maximum Entropy Method (MEM)

With finite (u,v) coverage and with noisy data, there are an <u>infinite</u> number of images which will fit the data.

So how do we choose?

Find "smoothest" image consistent with data ($\chi^2 \sim 1$)

MEM uses the "entropy" S to parameterize the "smoothness."

MEM is one of many possible "regularizers," other include total variation, sparsity, 'UD' regularizer, etc.

WR 104 Data

BSMEM developed first by Dave Buscher

WR 104 MEM Reconstruction

Iterations 1 to 30

WR 104 (2.2 microns)

- 2023 CHARA Data Workshop

Spotlight: Optical Interferometry

· 2023 CHARA Data Workshop

Realistic Interferometers

Some images from ten Brummelaar (Michelson Summer School 2000)

2023 Jata Workshop

Realistic Interferometers

Delay Lines

Some images from ten Brummelaar (Michelson Summer School 2000)

2023 CHARA Data Workshop

Realistic Interferometers

SM Fibers: How They Work

<u>"MIRC-style" All-in-One Combiners:</u> MIRC, VISION, MIRC-X, MYSTIC, SPICA

Mode:

Data:

26

4000

3000

2000

1000

0

Log:

J.D. Monnier: Introduction to Optical and Infrared Interferometry

Log

Photometric Channels

Receive pyconfig

Fringes vs Wavelength

Fringes:

Receive rtdimg

Log:

One Spectral Channel ○ CutRow ○ SumRov ○ SumCol □ Bias □ Ghost ♥ Boxes ♥ Fit ● CutRow ○ SumRov ○ SumCol □ Bias □ Ghost ✔ Boxes ✔ Fit) 2D Mode: O 2D • 2D Mode: ○ Fringe ● Xchan ○ PS 1D ○ PS 2D ○ PS Tre ○ Flux O FlxTr ○ Full ● Fringe ○ Xchan ○ PS 1D ○ PS 2D ○ PS Tre ○ Flux O FixTr Fringe O Xchan O PS 1D O PS 2D O PS Tre O Flux O Vis O FlxTr O Full O Vis Data:) Vis Data: O Full Cols (x) Rows (y) Flux Cols (x) Rows (y) Flux Cols (x) Rows (y) Flux \$ 300 \$ 0.0 \$ 0.0 2 76 \$ 9 2 30 2 0.0 \$ 0.0 100 \$ 9 1 30 2 0.0 100 \$ 300 21 21 0.0 150 250 100 200 300 30--30 400 25--25 300 ^<u>-</u>20--20 Ш 200 -15 15-100 10--10 0 40 50 70 150 200 250 300 30 60 100 100 150 250 300 200 DOWN -> DOWN -> DOWN -> min: -24.5 max: +4.6e+03 sum: 3.6e+04 mean: 706 rms: 1.32e+03 min: -1.84 max: +554 sum: 2.48e+05 mean: 56.1 rms: 67.8 min: -1.88 max: +450 sum: 1.38e+04 mean: 68.4 rms: 78.3 pos = 39.43 fwhm = 2456.86 max = 687825 offset = -687008 No fit... No fit... Refresh (Hz): 3.0 * Start RTD Stop RTD Refresh (Hz): 3.0 \$ Start RTD Stop RTD Refresh (Hz): 3.0 \$ Start RTD Stop RTD QUIT REOPEN QUIT REOPEN QUIT PING REOPEN PING PING

Receive rtdimg

Essential Points

- Interferometers measure Fourier components of images
 - With enough data, imaging is possible
 - Most commonly, we fit models to the interferometric observable: V² and Closure Phases
- Optical/Infrared Interferometry is technically demanding, but now routine
 - Wavelengths are small; atmosphere is unkind
- ~1 milliarcsecond resolution is interesting
 - Stellar diameters and stellar evolution, Planet-forming disks, stellar surfaces, interacting binaries, mass loss, exoplanets, AGN, and more!