Software activities shaping the CHARA Array

Narsireddy Anugu + CHARA collaboration

2022 Mar 13

bservatoire

KYOTO SANGYO

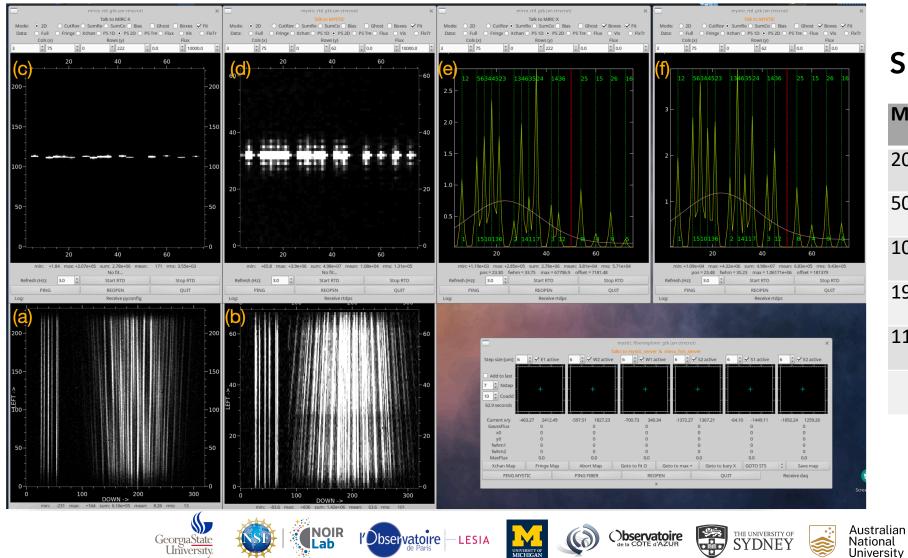
THE UNIVERSITY OF SYDNEY

Observatoire

CHARA beam combiners

	Wavelength	# of beams combined	Status
PAVO	R-band	2	In operation
CLASSIC/CLIMB	J+H+K	<= 3	In operation
MIRC-X/MYSTIC	J+H+K	6	In operation
SPICA	R-band	6	Commissioning phase
SILMARIL	H+K	3	Commissioning phase

UNIVERSITY OF MICHIGAN



ETER

1. MIRC-X + MYSTIC

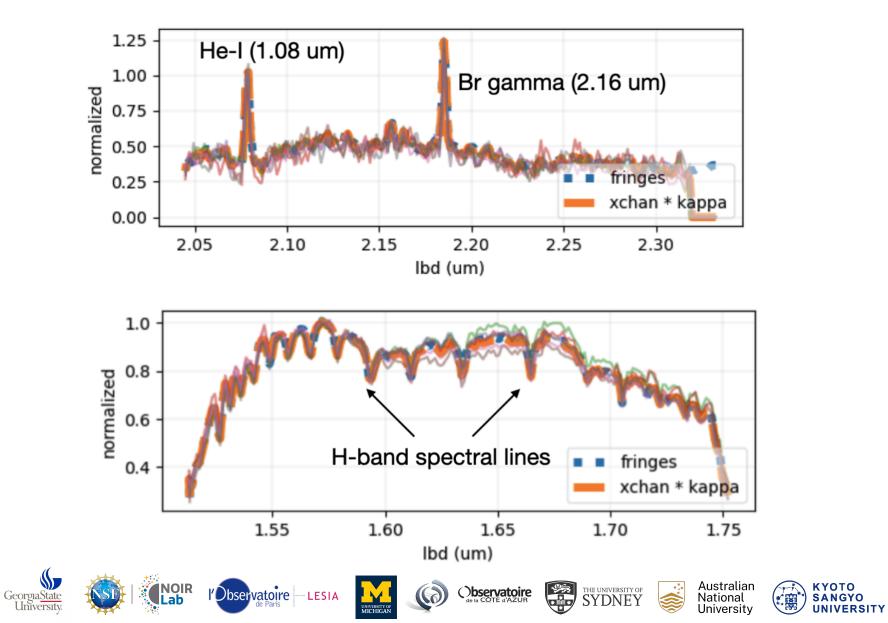
Spectral resolutions:

MIRC-X (R)	MYSTIC (R)
20	20
50	49
102	100
198	278
1170	981
	1724

(See John's talk)

E

UNIVERSITY OF


ETER

KYOTO SANGYO

UNIVERSITY

阛

1. MIRC-X + MYSTIC

UNIVERSITY OF

4

E

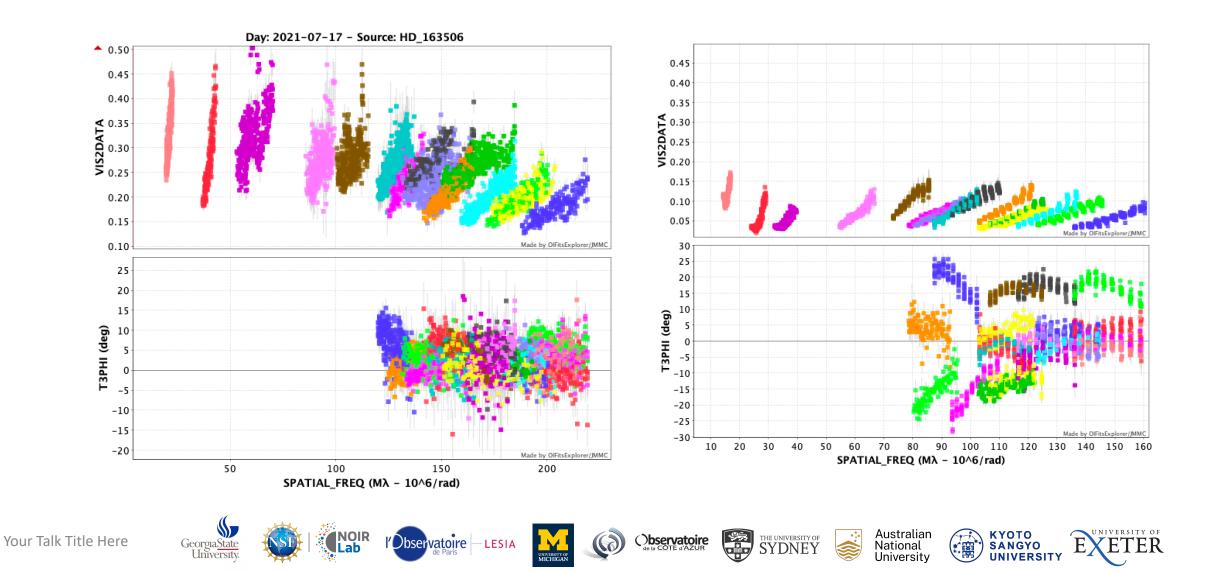
1. MIRC-X + MYSTIC: Two modes of fringe tracking

(1) Fringe tracker and science beam combiner Low R — fringe track

High R — science

For example, MIRC-X (low-R) and MYSTIC (high-R) MIRC-X (high-R) and MYSTIC (low-R)

(2) Combined mode: all the information is used for fringe tracking



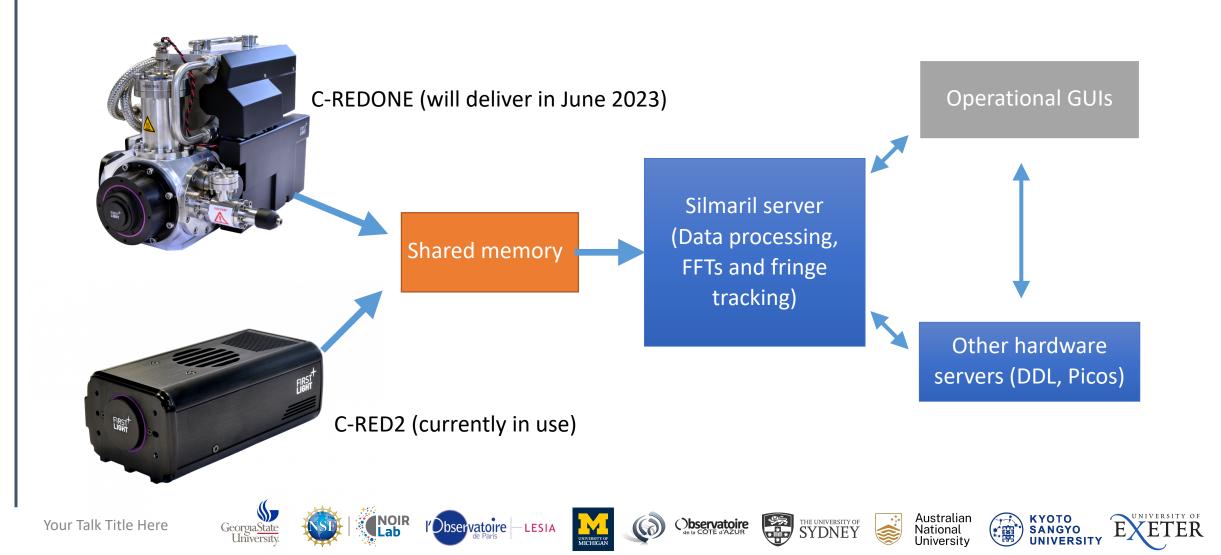
1. Combined mode for extended objects

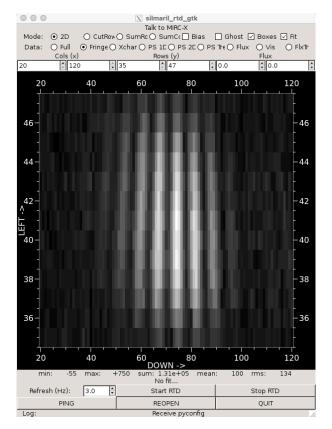
2. SILMARIL

- 3-beam combiner
- CRED ONE camera
- Aimed for sensitivity to observe faint stars
- PI: Theo ten Brummelaar

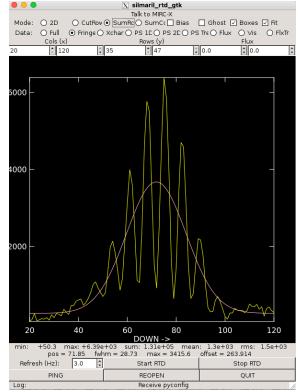
(See Cyprien talk)

KYOTO SANGYO

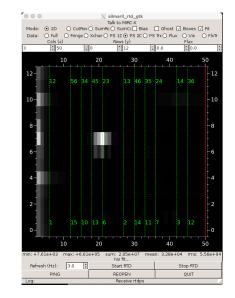

- We chose minimum development approach by using tested and working code
- We use MIRC-X software and GUIs, since the same camera and also users most familiar with mircx user interface



2. SILMARIL current status



2. SILMARIL software working with lab STS (see Cyprien talk more details)



GeorgiaStat

University

bservatoire LESIA

00	0										X		ril_gdt_										
beam	, po	p l	ldc		cart	pos e	rror			DL offs	et	іаік со	MIRC-X	size	link b	eams 🗹		S 1	S2	El	E2	Wl	W2
S1 5	5 0	;	×	MAN	FT	×	<<	<	0	0.000	>	>>	0.00	:	Loop-	Loop+		i -	×	×	×	×	×
S2 4	4 0	;	×	MAN	FT	×	<<	<	0	0.000	>	>>	0.00	÷	Loop-	Loop+		2.3	-	×	×	×	×
E1 :	1 0	;	×	MAN	FT	×	<<	<	0	0.000	>	>>	0.00	÷	Loop-	Loop+		1 0.7	0.4		×	×	×
E2 6	5 0	;	×	MAN	FT	×	<<	<	0	0.000	>	>>	0.00	÷	Loop-	Loop+		2 0.3	0.2	7.1	-	×	×
W1 3	3 0	;	×	MAN	FT	×	<<	<	0	0.000	>	>>	0.010	÷	Loop-	Loop+	V 12	/1 0.2	0.5	0.1	0.3	-	×
W2 2	2 0	;	×	MAN	FT	×	<<	<	0	0.000	>	>>	0.010	÷	Loop-	Loop+		0.7	0.5	0.2	1.3	25.6	-
LDC	re	fbear	npol	1 🔹	polforgdt	t O	*	PRIM	ARY		G	idt Gain	0.60	0.60	÷	Se	archT	nre: 10./	F F	RINGE LO	ск (LEAR N	MATRIX
DLslee	p(m	ias)	50 5	0	MET	гвох_і	т –	[DL CC	MM	\$		ZERO	PLE	OFFSETS	5	MIRC	X + MYS	TIC	DDL	. SAVE/G	ото	\$
OF	D:		S1 S 1.6			51 E2 16.0	S1 -28		S1 \ 8.		2 E1 3.2	S2 E2 37.9	S2		S2 W2 -30.8	E1 E: 9.2		1 W1 39.8	E1 W2 38.4	E2 W1 -22.0	E2 W		1 W2
POL			×		ĸ	x	>	<	×		x	×	3		×	×		×	×	×	×		×
POL			×		K 28 (× 0.16	0.3		×		x .22	× 0.18	,		× 0.21	× 0.51		× 0.17	× 0.00	× 0.23	× 0.23		×
DISPE			0.1			0.16 153.43		20 6.04	0.9		56.72	-823.9	0. 7 -79		-1890.7				457.14	-1939.46			.37 2.36
	NAL		46.			6.9	4.		14		.1	4.1	10		10.9	142.		1.0	3.9	5.1	25.2		12.5
	DISE		20.	0 20		20.0	20	.0	20		0.0	20.0	20	.0	20.0	20.0		20.0	20.0	20.0	20.0		0.0
GET	SE	ND	20.0	\$ 20.0	\$ 20	.0	20.0	+	20.0	\$ 20.0		20.0	20.0	+	20.0	\$ 20.0	\$ 20	.0 🗘 2	20.0	20.0	20.0	\$ 20.	0 🗘
Target:	ι.	INKN	OWN	Mag:	0.000	0000	RA	ι,	00 0	0 00.00	DEC:	00 0	0.00 00) H	A:	×	, U	тс:	×	., .	.,	×	
		PING	MIRC)	x			PING	OPLE				REC	DPEN				QU	т		R	eceive p	yconfig	

Australian

University

National

THE UNIVERSITY OF

SYDNEY

Observatoire

KYOTO SANGYO

UNIVERSITY

嚼

JNIVERSITY OF

3. Wavelength dispersion control

- With Denis, we developed a dedicated LDC (longitudinal dispersion correction) control
- This server can correct wavelength dispersion for SPICA and also J-band (MIRC-X) observations.
- Code adapted from ople to allow easy to play and for monitoring the computations.

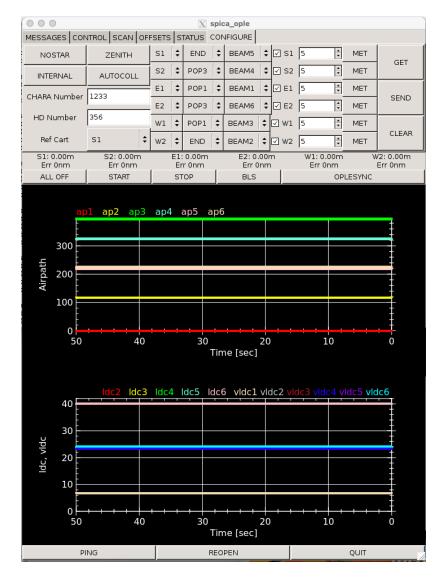
(See Denis talk for how its being used)



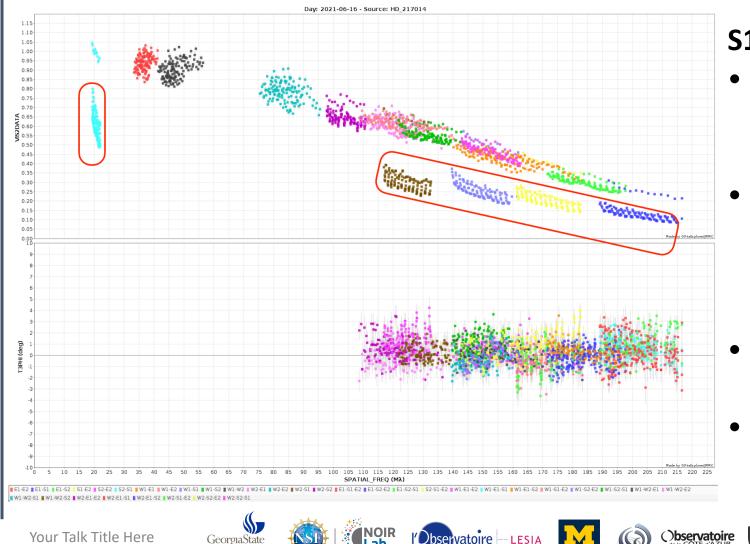
Image credit: Pannetier

KYOTO SANGYO

Australian


Jniversity

3. Wavelength dispersion control



JNIVERSITY OF

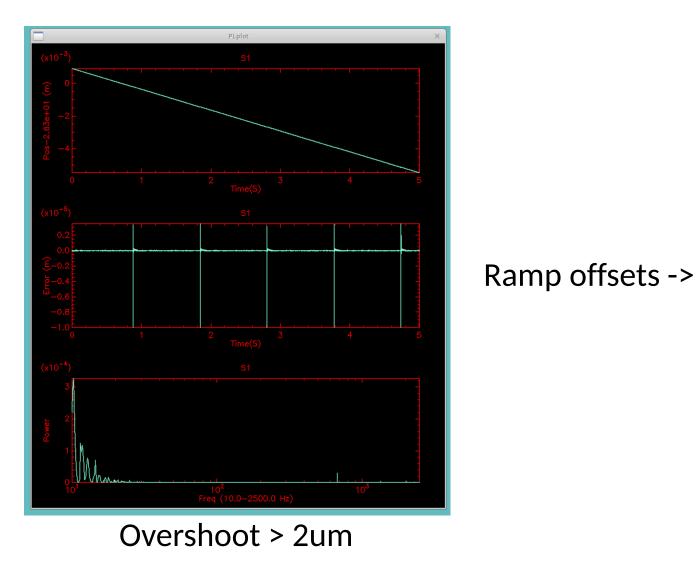
ETER

4. Visibility loss issues

S1 visibility drops

- Between elevation = 45 60 and Azimuth ~100
- We checked telescope area, tip-tilt and AO systems and they seem NOT introduce any vibrations.
- We narrowed it down to the S1 cart.
- Current solution is keeping S1 as REF

KYOTO SANGYO

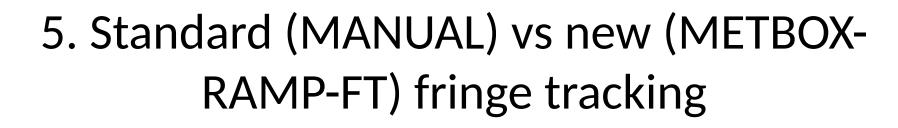

UNIVERSITY

Australian

Jniversitv

National

5. Fringe tracking improvements



Overshoot < 0.1um

PLplot

mystic_rtd_gtk (on ctrscrut) X Talk to MYSTIC	mircx_rtd_gtk(on ctrscrut) X Talk to MIRC-X	mircx.rtd.gtk ×	mystic.rtd.gtk ×
Mode: ● 2D O CutRov O SumRo O SumCo Bias Ghost 🗹 Boxes 🗹 Fit	Mode: • 2D O CutRov O SumRo O SumCo Bias Ghost 🗹 Boxes 🗹 Fit	Talk to MIRC-X Mode: ● 2D	Talk to MYSTIC Mode: • 2D ○ CutRoy ○ SumRo ○ SumCo Bias □ Ghost ✓ Boxes ✓ Fit
Data: ○ Full ○ Fringe ○ Xchan ○ PS 1D ○ PS 2D ● PS Tre ○ Flux ○ Vis ○ FlxTr Cols (x) Rows (y) Flux	Data: Full Fringe Xchan PS 1D PS 2D PS Tre Flux Vis FlxTr Cols (x) Rows (y) Flux	Data: O Full O Fringe O Xchan O PS 1D O PS 2D O PS Tre O Flux O Vis O FlxTr	Data: O Full O Fringe Xchan O PS 1D O PS 2D O PS Tre O Flux O Vis O FlxTr
0 0 0 0 59 0 0 10 0		Cols (x) Rows (y) Flux	Cols (x) Rows (y) Flux 0 299 0 59 0.0 1.0 1
0 100 200	0 100 200		
S1-S2 45 S2-E2 46 S1-E2 56	S1-S2 45 52-E2 46 51-E2 56 56	0 100 200	0 100 200
¹		S1-S2 45 S2-E2 46 S1-E2 56	S1-S2 45 S2-E2 46 S1-E2 56
S2-W1 34 S1-W1 35 E2-W1 36	30 - ^{52-W1} 34 51-W1 35 E2-W1 36 -30	52-W1 34 S1-W1 35 E2-W1 36 an	S2-W1 34 S1-W1 35 E2-W1 36
	الماري والمراد والمرامة عرار بحمله بامراد مسمعة معاجلتهم معترفه المتمامة مقدامهم ا	30-32-01 34 31-01 35 22-01 30 -30	
40		الالارتيار ومواجعها والتناقية والمتحد والمتحد التركي والمتحدين	40-
\$2-W2 24 \$1-W2 25 £2-W2 26	1944W2 24 J 91-W2 25 624W2 261		
ى يوسون المالايين بالمانيا <mark>اليس أوسين بمساعير الكافر ا</mark> لمسارية بردام من المعام بار أو		S2-W2 24 S1-W2 25 E2-W2 26	S2-W2 24 S1-W2 25 E2-W2 26
		20	
- S1-E1 15 E1-E2 16 W1-W2 23			
		S1-E1 15 E1-E2 16 W1-W2 23	S1-E1 15 E1-E2 16 W1-W2 23
			20-
		10-10	
- E1-W2 12 E1-W1 13 S2-E1 14 -	. 1.42 12 E1-W1 13 \$2-E1 14	- 	- E1-W2 12 E1-W1 13 S2-E1 14 -
a i the approximation of the providence and the particular the second state of the second state of the second s			- E1-W2 12 E1-W1 13 S2-E1 14 -
		الاستياباتين وتشكيه فتتحدث والمتحدين	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		o=	0-
min: +0 max: +1 sum: 2.73e+03 mean: 0.152 rms: 0.293		0 100 200	0 100 200
No fit	min: +0 max: +1 sum: 2.69e+03 mean: 0.225 rms: 0.334 No fit	min: +0 max: +1 sum: 1.76e+03 mean: 0.147 rms: 0.327	min: +0 max: +1 sum: 2.45e+03 mean: 0.136 rms: 0.289
Refresh (Hz): 3.0 C Start RTD Stop RTD	Refresh (Hz): 3.0 C Start RTD Stop RTD	No fit	No fit
PING REOPEN QUIT	PING REOPEN QUIT	Refresh (Hz): 3.0 Start RTD Stop RTD	Refresh (Hz): 3.0 Start RTD Stop RTD
Log: Receive rtdpstrend	Log: Receive rtdpstrend	PING REOPEN QUIT	PING REOPEN QUIT

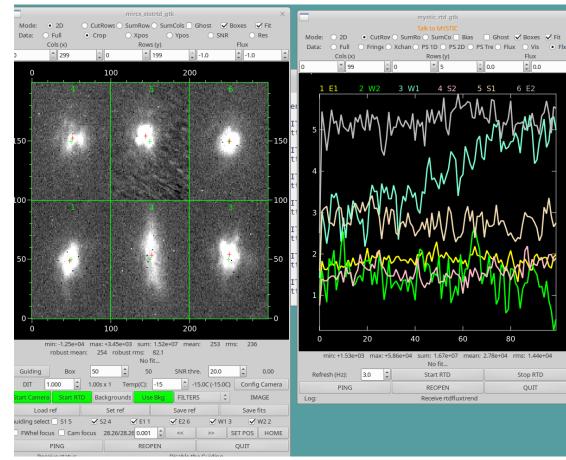
MIRC-X

FT target M

MYSTIC

MANUAL target

MIRC-X



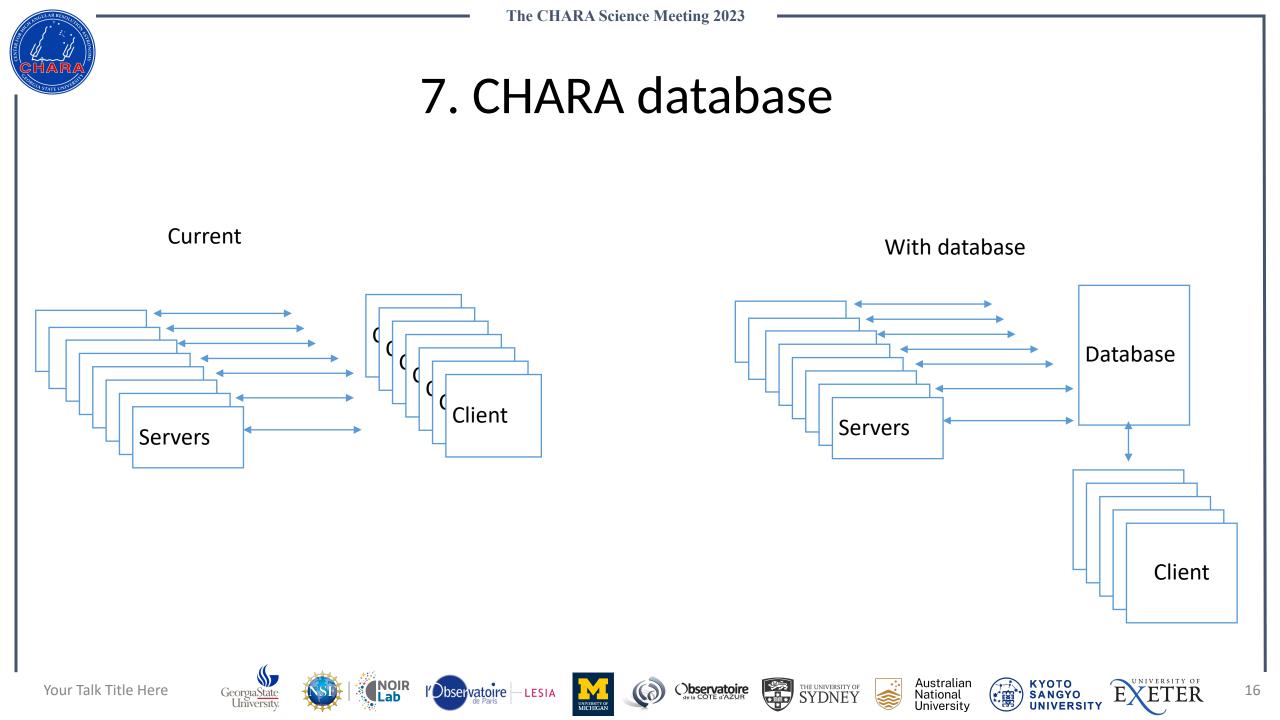
6. Flux stabilization with Star Tracker

Demonstration of beam stabilization (W1 loop was not closed)

- Along the beam train (>100m), all optics/actuators are in motion due to misalignments and temperature differences
- Which causes the beam drifts
- We track the beams using the Star Tracker and feedback to M7 actuator via labao sensor for stabilization

(See John's talk for more details)

SANGYO


THE UNIVERSITY OF

Your Talk Title Here

Future works

ETER

E

8. CHARA client-server library upgrade

- The CHARA client-server library works great in good network conditions but have problems in slow network
- To solve we attempted zeromq, open-source messaging library

bservatoire LESIA

- Zeromq is a high-speed, Muti-transport (TCP, UDP, IPC, and web socket ...)
- Zeromg being used for TMT common software
- The zeromg library is built into CHARA software and tested in the lab but need to be tested on-sky
- Rolling over between CHARA classic vs zeromq based client-server, unfortunately complex and abrupt because, we need to install and start 100 applications (including servers and GUIs)

Observatoire

9. CHARA software upgrade To ubuntu 22

Currently we are using Ubuntu 16 LTS (support ended Apr 2021)

- A straightway upgrade of computers will not work as we need to upgrade software of cameralink and DM computer software
- Recent version of Matrox and Bitflow frame grabber software support the Ubuntu 22 LTS. We need to buy license to upgrade them.
- The rest of them are easier but we need to install in one compute and test.

bservatoire

Observatoire