CMAP: Nasmyth Instrument Bench Design

Robert Ligon

Overview

The CHARA Michelson Pathfinder Project (CMAP)

- Explore the possibility of using fibers for transport to extend the observatories capabilities
- Get 2 telescope fringes with S1 and S2
- Addition of a mobile telescope to demonstrate the ability to add additional baselines
- Observe science targets with two telescopes from multiple locations

bservatoire LESIA

Observatoire

THE UNIVERSITY OF SYDNEY

• Closure phase on certain subsets of the 7 telescopes

KYOTO SANGYO

UNIVERSITY

Australian

Vational

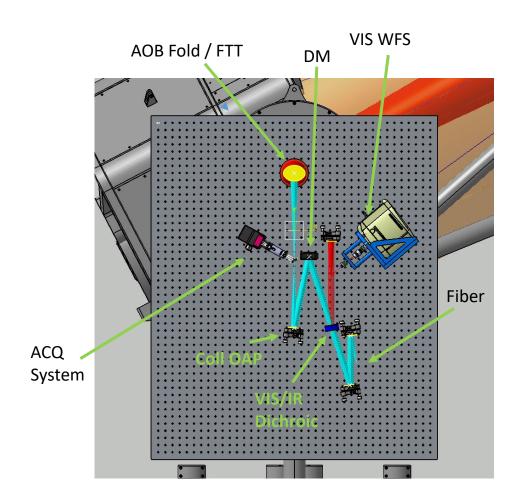
University

Subsystems required

- Fiber injection modules for S1, S2, W1, E1; starting with the use of the current OAP's installed at S1 and S2 for ALOHA project
- Collimation modules for re-collimation of the beams at the delay line; two that utilize on-axis parabolas initially
- Fiber transport system
- Fiber metrology
- A mobile telescope with enclosure

Parameters for the mobile telescope

- 1. Telescope F/#- 12.2 +/- 0.3
- 2. BFD: 650 mm +/- 50 mm from Nasmyth port
- 3. TWFE: max 0.6 waves @ 633 nm at any angle of elevation within operating range
- 4. Science band: 1.49-1.78 um
- 5. Use general design of current telescope WFS system
- 6. WFS max read out rate: 441 Hz
- 7. Ability to work with current telescopes
- 8. Fiber: Corning PM14-U25D
- 9. Daily temperature fluctuations of 10C 20C possible over a day. With seasonal temperatures between 0C 35C for all operations; -5C 40C survivability
- 10. Low maintenance- the research will extend over a long period, so the system needs to be robust



KYOTO SANGYO

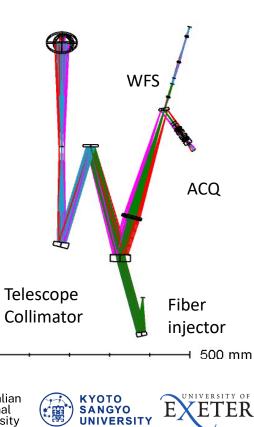
Initial design

Observatoire LESIA

- ACQ: 2x2 arcmin FOV •
- Tel F/#: 12.2 •
- ALPAO DM97-25; 8 sub apertures for a 20 mm pupil

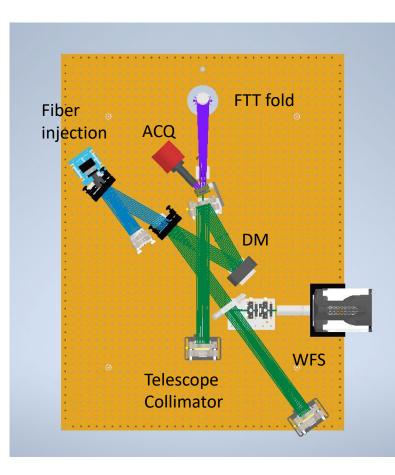
Australian

National University


WFS- modified design of current telescopes •

The design was preliminary in needed some details worked on

- WFS system converted to an all-lens system
- WFS Operational range: 600 ٠ nm – 950 nm
- Off-axis fiber injector ٠

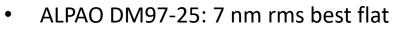

Observatoire

THE UNIVERSITY OF SYDNEY

GeorgiaStat Universit ETER

40 mm design

- ALPAO DM97-50; 8 sub apertures for a 40 mm pupil
- WFS system on axis parabola with fold
- WFS Operational range: 560 nm 950 nm
- On-axis fiber injector
- On-axis parabolas are easier to align
- The fiber injector is in unmonitored space
- FTT not being at pupil- less than 1% pupil shear
- DM not being at pupil also less than 1%
- Wider bandwidth for the WFS camera then the 20 mm design
- ACQ using same input lens as current telescopes



- ALPAO DM97-50: 25 nm rms best flat (as built better)
- For the DM97-25, assuming all surfaces have 21 nm rms
 WFE at a higher spatial frequency then the apertures:
 95% SR
- SR loss of less than 7% using DM97-50
- Use less then 25% of the DM range

WFE	PV [nm]	rms [nm]
Telescope	189.9	37.98
FTT	105	21.00
tell coll	105	21.00
holey mirror	105	21.00
DM97-50		50.00
WFS dichr trans	158.25	31.65
fiber fold	105	21.00
injector	105	21.00
total rss [nm]		84.55
Strehl at 1500nm		0.882

Component	rms error	um PV
2 axis T/T atmos	4.4 urad	2.5
tracking	0.1 arcsec	0.25
atmos WFE	4.4 rad	1.05
telescope	0.4 um PV	0.2
focus comp	0.6 um PV	0.3
Total		4.3

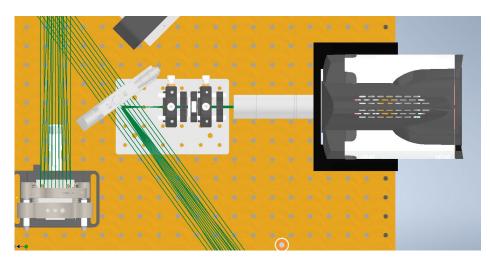
Australian

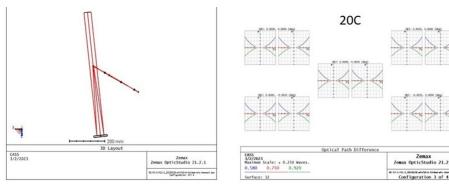
National

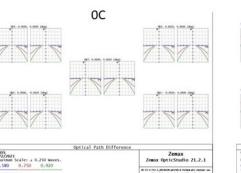
University

KYOTO SANGYO

UNIVERSITY

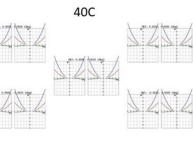



THE UNIVERSITY OF


WFS

Uses a similar design as the current WFS system

- On-axis Edmund parabola
- Spider fold: in progress
- 49315/APO-Q-P300-F15.9(633)/49319/49315
- Image 68x68; ROI 90x90
- Andor 897
 - NUVU Hnu 128
 - Has possible benefits
 - Gains might be difficult to use when operating with other telescopes
 - More dark current
 - Might need more software work
- Thermal
 - +/- 1/8 average wave change (20 nm rms)



THE UNIVERSITY OF

SYDNE

Observatoire

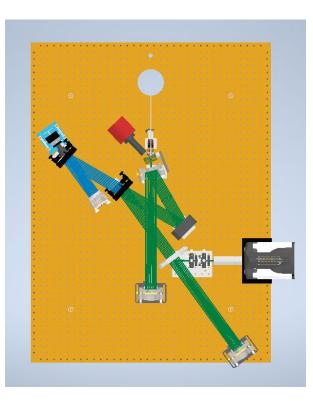
KYOTO SANGYO

UNIVERSITY

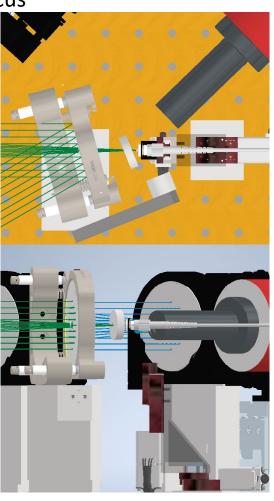
Australian

National

Universitv



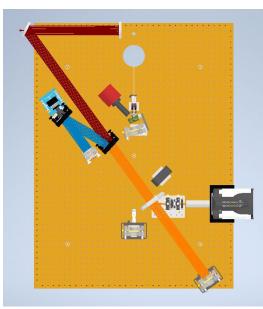
ETER


Sources: Cal and beacon

Cal source

- Retractable fiber at telescope focus
- Vertical and focus stages

Georgia<u>Sta</u>

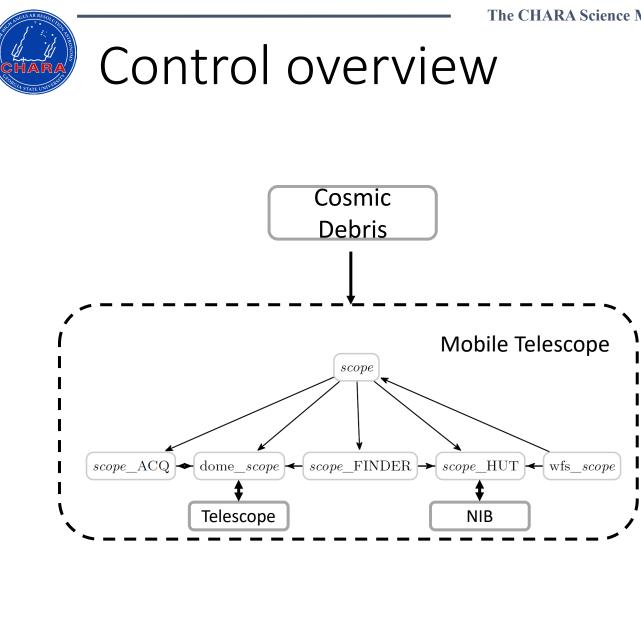

Observatoire LESIA

Beacon

Cbservatoire

THE UNIVERSITY OF

- Thermal fluctuations of the WFS may be minimum so no need for a beacon
- Maybe use to inject visible light into fiber for labao
- Possible fiber metrology pick off in this arm



Australian

National University KYOTO SANGYO UNIVERSITY

CETER

NOIR Lab

l'Observatoire LESIA

Equipment:

- Andor iXon Ultra 897 •
- **ALPAO DM97-50** ٠

Australian

National University

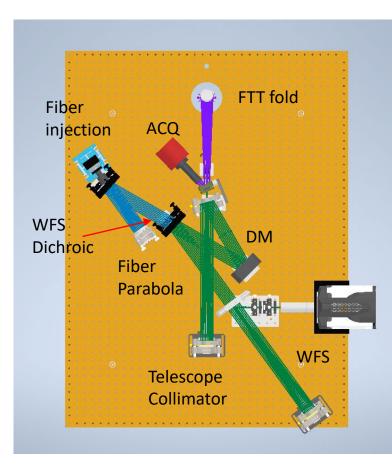
- ZWO ASI294MM Pro
- PI 315

Conte d'Azur

()

THE UNIVERSITY OF SYDNEY

Zaber actuators, stages •


Georgia<u>State</u> University

10

KYOTO SANGYO UNIVERSITY

阛

Actuation

- FTT fold- PI 315
- Cal source- Zaber stages focus/vertical
- WFS Dichroic T/T Zaber LCA actuators
- Fiber injection fold T/T Zaber actuators
- Fiber parabola- PI 315: future or needed?
- Fiber- flexure XYZ stage with focus actuation using zaber actuator
- WFS parabola- flexure Z stage with zaber actuator
- (F)Telescope collimator- flexure Z stage with zaber actuator
- WFS camera- X/Y actuation for ROI alignment: zaber

bservatoire LESIA

Observatoire

SYDNE

Summary

- Using the DM97-50 to get a pupil of 40 mm to allow an on-axis design
- Use of equipment already used at CHARA to minimize software work

l'Observatoire LESIA

- Finishing up
 - Fold mirror for WFS parabola
 - Metrology pick-off
 - Various bases for alignment purposes
 - The FTT fold mirror mount
 - Specifications
- Testing, building
 - Bonding of the WFS parabola fold
 - Flexure stages with zaber actuators
 - Alignment of WFS system

Acquisition camera_R

Australian

Vational

University

KYOTO SANGYO

UNIVERSITY