

## U. Michigan Update:

#### MYSTIC, STST, pipelines.... and more

John Monnier MIRC-X / MYSTIC Collaboration

















### Big Changes in Group

- Tyler Gardner graduated PhD
  - Won UM Proquest Dissertation Prize
  - Now working with Stefan Kraus in Exeter
- Ben Setterholm graduated PhD
  - Now working in UM College of Engineering on SunRISE, the first space interferometer!
- Jacob Ennis moved on to new things!
- Noura Ibrahim advanced to PhD candidacy
- Rachael returned to UM as 51 Peg b Fellow!
- Had 3 extended visits last year from Exeter
  - Great to work with Issy, Dan, and Sorabh!



#### BIG THANKS TO EVERYONE FOR ALL THEIR AMAZING CONTRIBUTIONS!!

## Installation of GRAVITY

- JB, Ben, Dan +company installed GRAVITY chip into MYSTIC
  - Amazingly, no problems
- Four new OAPs + periscopes installed to avoid un/plugging fibers
  - Amazingly, no problems
- Final installation of grisms/prisms
  - Ok.. Some small problems here...



| Optic(s)                    | R    | Kmag |
|-----------------------------|------|------|
| Prism                       | 20   | 7.9  |
| Prism                       | 49   | 7.5  |
| $2 \times \text{Prism } 49$ | 100  | 7.1  |
| Grism                       | 278  | 5.8  |
| Grism                       | 981  | 5.1  |
| Grism                       | 1724 | 4.8  |









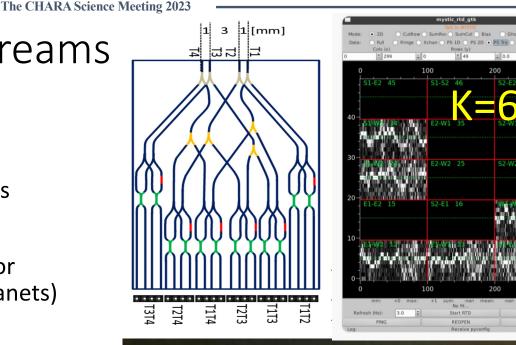


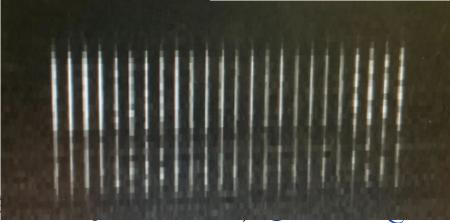
## CHARA

# The hopes and dreams for ABCD mode

- Better visibility calibration
  - Visibility insensitive to flux ratios
- No cross talk
  - Great for very resolved targets or precision closure phases (Exoplanets)
- More sensitive ?
  - Able to use R20 mode, but hard to track !!

#### Software Status:


- Realtime observing software ready
- Data Pipeline still not ready for science







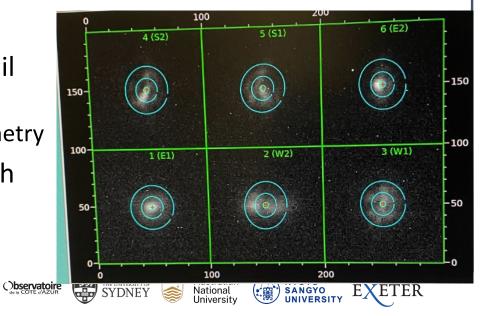







### Six Telescope Star Tracker

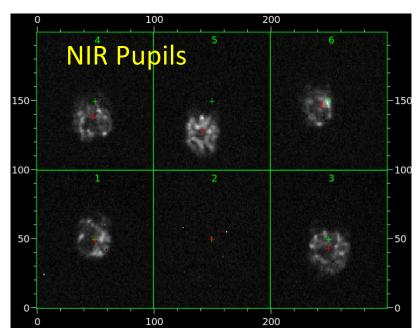
- STST is essentially the same at the STS reference source backwards
  - Mostly built by Jacob and Mayra
- Bare glass reflects 4% of NIR light to STST on a retractable stage
- CRED2 sensitivity J+H' (thanks Exeter!)
- Lens located in filterwheel to allow pupil imaging
  - + J,H filters (in future) simultaneous photometry
- Installed Aug 2022 by Rob, Narsi, Sorabh (john got covid!)
  - Followup visit John and Issy (added water cooling)












### STST Performance

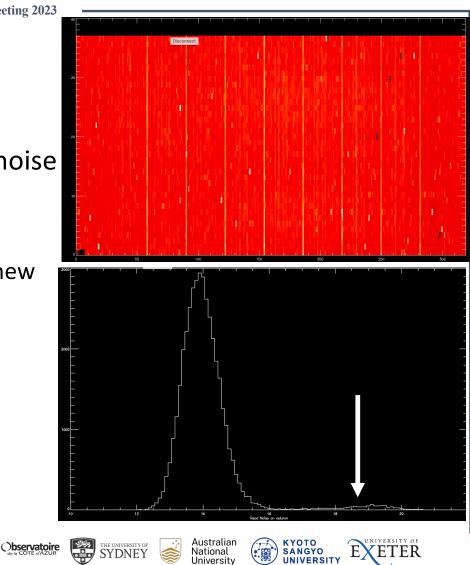
- Huge amazing software work by Narsi
- John+Narsi worked on camera optimization
- We can track objects down to H~6
  - Rob and Narsi reduced backgrounds a lot
- Next: work on long exposure mode to get down to H 7.5
- Real-time tracking does substantially reduce drifts
- But our method to track too often fails due to sometimes large differences between visible/IR beams ☺
  - Pupil sometimes terribly off (x10 loss, cause still under investigation)

NOIR l'Observatoire LESIA








# New issues with detectors

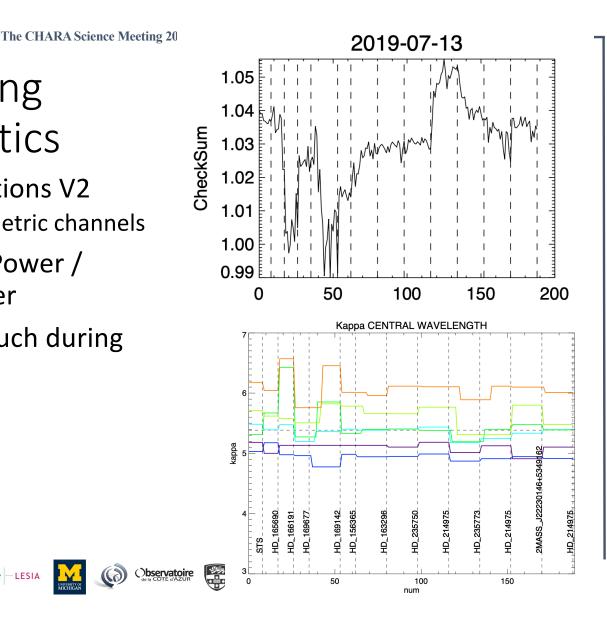
- Sometimes MYSTIC shows some pattern noise
  - Restart camera if you see it
- Noise pattern changed (Fall 2022)
  - Same for mircx + mystic, so likely related to new colder chiller or firmware update
- Seems to mess up bad pixel flags in some nights
  - Increase badpix threshold 15 sigma.
- Weird issues?
  - email me monnier@umich.edu
  - post on UM slack #data\_pipeline










CHARA

## Example of using Kappa diagnostics

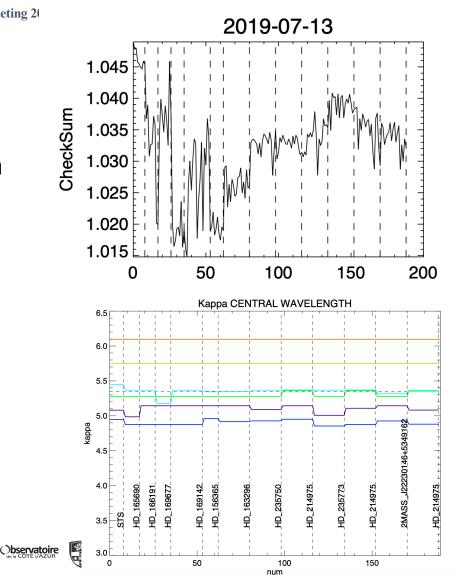
- Kappas are critical for calibrations V2 Fringe Power = Kappa X Photometric channels
- Checksum: Predicted Fringe Power / Actual Measured Fringe Power
- If kappas jump around too much during night then problem

Observatoire - LESIA

• Bad or low quality shutters



### Example of using Kappa diagnostics


- Default behavior is to take closest kappa measurement in time with quality >5
  - This is not good enough. Way too noisy
- Proposed default to use
  - A) best same target kappa quality (Q>50)

Observatoire

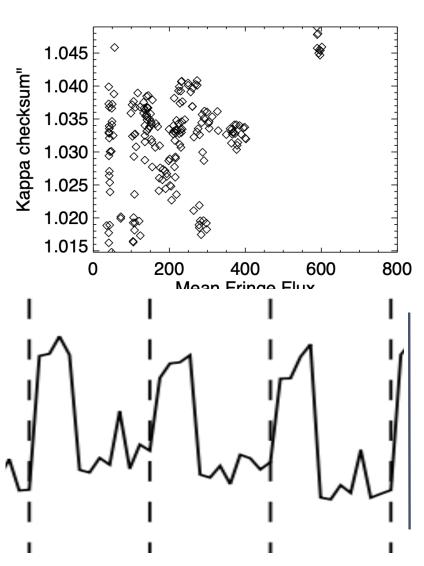
LESIA

- B) if no A, best one of night (Q>5)
- Note the checksum is still offset from 1

• Why?



Observatoire


### Example of using Kappa diagnostics

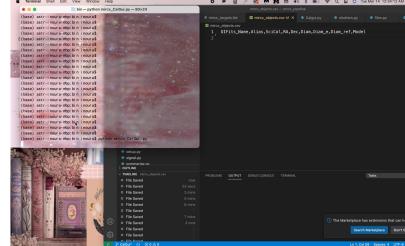
- Checksum >1 could be due detector nonlinearity, but no dependence with flux seen
- I retagged the individual beam shutters to be interpreted as data, so see if the checksum 1 was recovered.
  - It was for half the beams but not the other half

NOIR l'Observatoire LESIA

- To be continued.....
  - Not fixed yet.
- This and more things you wish you didn't know on slack #data\_pipeline






## Python version of IDL mircx\_cal

- Use of the mircx\_cal IDL script vastly improves data quality <u>and makes</u> <u>calibrating your data FUN!!</u>
  - Recently John+Gail added "Deepclean"ing to automatically flag outliers in an objective way
- Issy and Noura working to update the IDL mircx-cal to be
  - Fully pythonic
  - Fully interactive for data editing and inspection
  - Have modern features like "undo" and "save flags"

NOIR l'Observatoire LESIA

- Creates summary pdf files
- Work with any oifits not just mircx/mystic





SANGYO

National

ETER

Conservatoire

#### Goals for new mircx\_mystic pipeline

- Edit headers through a spreadsheet
- Extensive checking for bad shutters
- Better removal of camera interference, background drifts, non-linearity
- More advanced and sensitive kappa modelling w/ errors
- Use Beam profiles as flat fields
- Support flexible group delay tracking methods
  - Needed for polarization modes or when using mircx to track fringes on mystic
- Calibrations of differential quantities, differential phase
- Better error bars on interferometric observables
- FASTER use multiple cores
- Produce nightly summary plots to speed up data quality checking



TER

Biggest array technical concerns

Delay line oscillations when carts are at certain speeds.

- Need realtime monitors to detect and also way to reproduce in lab
- AO performance is not reliable
  - One AO system still not working >6 months.
  - Need to engage more of the collaboration to help
- Beams not always aligned to lab well
  - 3-10x losses randomly. Not repeatable. Why?
  - Recent STST tests are going in right direction.
- Mystic FSM mirrors oscillating and overheating
  - Probably related to our wiring and amplification of pickup signals
- Heat load from MIRCX/MYSTIC
- STST sensitivity (work needed on long exposures)
- Lack of folks contributing to data pipeline development and testing



#### Archives

- Michigan cloud storage got more expensive and will be moving to a less expensive option
  - Total MIRC+MIRCX+MYSTIC archive now > 140 TBytes
  - Nights are tarballed into 1 big file
- UM funding two undergraduates to create L1 oifits for all/most MIRC Archival data
  - Upload all oifits to JMMC
  - Encourage other teams to do the same (classic, climb, fluor, pavo)







| MIRC Statistics                                                                        |                |
|----------------------------------------------------------------------------------------|----------------|
| Operational                                                                            | 2006-<br>2017  |
| # nights                                                                               | ~500           |
| # of observed targets                                                                  | ~500           |
| # refereed papers                                                                      | 44             |
| # Nature/Science papers                                                                | 4              |
| # of UM PhDs                                                                           | 7              |
| Core addure Reproduced Free UNIVERSITY OF SYDDNEY STUDY AUSTRALIAN NATIONAL UNIVERSITY | EXETER<br>ETER |



#### MIRC-X and MYSTIC Consortia News

- We plan to hold a zoom meeting this year to discuss many issues
- Code of conduct
  - We won't tolerate unethical behavior in our collaboration
  - Open invitation to talk with me about any issues you see
- Evolving Authorship Policies
  - Follow recommendations of other medium-sized groups
  - Co-authorship should depend on level of contribution and is not meant to be permanent
  - Find ways to keep people involved after leaving groups
  - Special cases for incidental use of MIRCX/MYSTIC data
    - Shorter co-author list



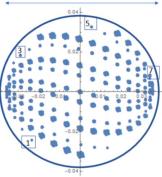
Conservatoire Core d'AZUR THE UNIVERSITY OF SYDNEY

Australian National University KYOTO SANGYO UNIVERSITY

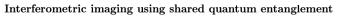
# Other interferometry activities at UM

- Drone Interferometry
  - With Aerospace Engineering
- Cubesat Interferometry (STARI)
- Quantum Interferometry with Entangled Photons
- Compact delay lines for future fiber-connected array
- Nulling Interferometer Combiner for CHARA/MROI
- PFI → Science Case for a Stellar Imaging Interferometer

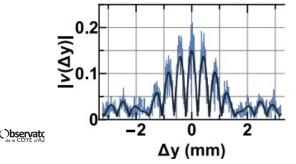



Observatoire LESIA






#### <u>Harriot Cell</u> Multi-pass DL


400m delay 170 bounces 82% efficiency 1.5—1.75micron Arnold et al.



76 mm

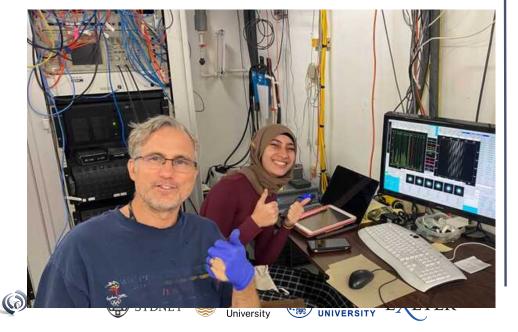


Matthew R. Brown,<sup>1, \*</sup> Markus Allgaier,<sup>1</sup> Valérian Thiel,<sup>2</sup> John Monnier,<sup>3</sup> Michael G. Raymer,<sup>1</sup> and Brian J. Smith<sup>1</sup>





## The future is bright


- H+K band MIRC-X + MYSTIC routine
- New polarization mode for MIRC-X ready for science
- New high spectral resolution mode ready for science
- Hopefully soon we can do simultaneous R+J+H+K science

l'Observatoire - LESIA

#### Come join us in Michigan!

Happy to support applications for

- NSF, Hubble, Sagan, 51 Peg b Fellows
- Marie Curie Fellows (from Europe)
- CHARA+ VLTI Projects
- Advanced mode!

