Open Access and Engineering at the CHARA Array

Gail Schaefer

CHARA Array of Georgia State University

Open Access + Engineering GeorgaState

Observing Opportunities at CHARA

• Internal Time

 Researchers at institutions that are part of the CHARA Collaboration

Observatoire - LESIA

Observing Opportunities at CHARA

- Open Access Time
 - Supported by National Science Foundation: Mid-Scale Innovations Program
 - Open to the broader astronomical community
 - UPDATE: Non-GSU members of the CHARA collaboration can apply, but we ask that you do not submit the same proposal to both TACs
- Currently offer 45 nights per semester to the community
 - Expand up to 50 night
- Open Access Time offered through NOIRLab
 - Semester A (Feb Jul): due end of September
 - Semester B (Aug Dec): due end of March

Open Access + Engineering

Support for Open Access Time

• CHARA staff can assist new users:

- Developing science programs
- Planning observations

• Open access observations conducted by CHARA staff

- Investigators encouraged to participate in-person or remotely
- Travel funds available
- Users with prior experience can take observations
- CHARA provides calibrated OIFITS files
 - Reduction pipeline available on remote data reduction machine

Open Access + Engineering G

Visitor Support Scientist: Cyprien Lanthermann

aurence Honnorat/Innovaxiom

Data Scientist: Jeremy Jones

Open Access Statistics

- Average over-subscription rate ~ 2
- Over 350 astronomers applied for open access time

Open Access Observers Presentations at 2023 CHARA Meeting

Observatoire

- Matthew DeFurio A-Star Multiplicity
- Ashley Elliot Exoplanet Host Stars
- Muhammed Zain Mobeen Stellar Merger Remnant
- Ryan Norris Evolved Stars
- Rachael Roettenbacher Spotted Stars

bservatoire

- Eric Sandquist Age Calibration in Nearby Clusters
- Willie Torres Orbits and Masses in Castor System

Comparison of Internal and External CHARA Observers

KYOTO SANGYO UNIVERSITY

ETER

富

Open Access + Engineering

CHARA Publications

- 238 refereed publications based on CHARA data
- Over 800 unique coauthors!

bservatoire

CHARA Publications

- 238 refereed publications based on CHARA data
- Over 800 unique coauthors!
- 5900 citations in refereed papers

Australian

University

National

THE UNIVERSITY OF SYDNEY

Observatoire

Observatoire LESIA

KYOTO SANGYO

UNIVERSITY

Engineering Time at the CHARA Array

- First half of Wednesday nights
- Test new software developments
- Investigate problems reported by observers

Seasonal Baseline Solutions

- Update the baseline solution every few months using last 2-3 months of baseline solution data
 - Minimize drifts in offsets over time
- Transition to using Aaron Labdon's python baseline solution tool:
 - https://gitlab.com/alabdon/baseline-solution-tool/-/tree/main
 - Fix beam positions. Fit telescope XYZ, LIGHT path, POPs.

bservatoire

- New solution created 2023Feb20 based on Dec-Nov data
 - Updated solution will be needed as temperatures warm up

Observatoire

Seasonal Baseline Solutions

Open Access + Engineering GeorgiaState University

Ш

UNIVERSITY OF

ETER

S1 - Bad Visibility Calibration Zone

- S1 baselines show V2 miscalibration at low elevations in the east
 - Elev < 55, AZ ~ 100
- Possible link to cart vibrations S1 moves slowly in this region of sky
 - Goes away when S1 is ref cart
- Temporary fix:
 - Use S1 as ref when observing in this part of sky
- Next step: Reproduce in lab

Australian

Jniversity

Low Flux Problems

- Low flux on S1-POP5 when pointing low in south
 - E2 and other telescopes also show intermittent low flux
- Use the Six Telescope Star Tracker to help diagnose problem
 - See John Monnier's talk

bservatoire

LESIA

Observatoire

Low Flux Problems – Standard Alignment Sequence

Telescope AO

Standard Alignment

Red Beacon:

Align beacon flat mirror to telescope WFS

Blue Beacon: Align dichroic to labAO WFS

Lab AO

NOIR

ETER

Low Flux Problems -IR Light Offset in lab Compared with Visible

Standard Alignment

 In December, Norm and Narsi found that aligning the IR starlight to the Star Tracker reference positions improved mircx/mystic flux

		No fit											
	Guiding	Guiding Box			\$ 50)	SNR thre.		20.0		• •	0.00	
	DIT 1.000	COADD 5		Temp(C)	40	+-40.0C (-40.0		Config Came		r CDS			
	Start Camer	mer Start RTD Backgr		ound	Use Bkg	Use FLAT		IMAGE		\$	IMAGE		
Load ref adjus			t box S		Set ref	Save ref			Save fits		ABORT		
	Guiding select	S1 5	S2 4		🗌 E1 1	E2 6			🗌 W1 3		W2 2		
	FWhel focus	Cam 1	focus	23.4	2/8.67 0.001	_ ▼	<<		>>	SET	POS	ном	
PING			REOPEN			RECONNECT				QUIT			
	Receive image					Moved.							

Open Access + Engineering

Low Flux Problems -IR Light Offset in lab Compared with Visible

bservatoire

Standard Alignment

THE UNIVERSITY OF

SYDNE

Receive image

Observatoire

Beacon Flat Alignment

- Move beacon flat to align IR light to the IR Star Tracker
- This misaligns the red beacon and starlight but improves throughput to IR science combiner

Moved.

New Alignment Sequence

MIRC-X Fluxes

E2 Flux

S1 Flux

Open Access + Engineering

THE UNIVERSITY OF

UNIVERSITY OF

ETER

23

IR Position Offsets - CalSource

26

Misalignment between IR vs. VIS Light

- Offset between IR and visible light rotates with azimuth (1")
 - Dispersion from dichroic on telescope AO bench

Observatoire LESIA

- Larger offsets for lower elevation stars
 - Atmospheric refraction
- Static offset
 - Vacuum windows?
 - Other yet to be identified source?
- New alignment sequence
 - Move beacon flat to center IR light in lab using the 6T Star Tracker

Observatoire

KYOTO SANGYO

Summary

- Expanding participation in the community through the CHARA open access program
- Continued engineering time to test new software and observing techniques to improve performance of the array.

