

Current state of CHARA telescopes & Future plans

The CHARA Science Meeting 2025 - Nice

https://slides.com/nicscott/chara_meeting_2025

nic scott

Telescope Systems Scientist

Where does CHARA have single point failures....

i.e. where the nightmares lie?

- aging equipment
- time sinks
- lack of spares
- discontinued components
- supply chains becoming questionable
- other risks

- Mirror recoats
- W1 M5 damage
- Winch system
- New drives
- Stairs & weatherstripping & minions
- Cylinder control
- W1 realignment
- AOB problems and plan for new system
- Tiptilt concerns
- Future

Mirror recoats

scope	date last done	tbd
S1	4-2022	2026
S2	8-2021	2026
W1	2-2025	2027
W2	9-2019	2025
E1	12-2024	2027
E2	1-2018	2025

- W1 M5 fracture
 - internal mirror stress
 - cross polarization test
- Replaced with flat M4 -lucky
 - no spare M6 or M2
 - have a matched M1/M2 spare
- Chamber is no longer flat
 - teflon standoffs
- Chamber seal
- Want a small chamber for individual mirror recoats
- Boom truck
 - Genie/rental stop gap
 - new hoist system
 - needed for AZ drive

W2 & E2

- Stairs and crypt platform added for safety
- W2 done, E2 next
- S1 weatherstripping and flashing replaced/repaired
 - needed for all scopes

Interface plate done for seeing monitor

- TelAO instead of TAS for alignment
- circle4.py
- speeds and improves EL axis alignment
- predicting circle from 74° of rotation by eye is tricky
- 3 independent fits for any circle
- uses pixel values from acq / Brunson aligncam / any camera

- W1 issue
- Custom pcb's
- Prone to elec. interference
 - particularly at E2 & W2
- Very tricky to diagnose
- Single cable fault may make the whole system not work or work in odd ways
- Differences b/t scopes
- Can cascade

current:

- single motor driver (r256)
- multiplexed relays
- daisy chained
- sequential operation only
- little or no feedback, timing-based
- very difficult to diagnose/repair
- not necc. interchangable

ideal:

- 1 r256 per axis
- no multiplexing
- parallel operation
- expensive (>\$10k/scope)

current:

- single motor driver (r256)
- multiplexed relays
- daisy chained
- sequential operation only
- little or no feedback, timing-based
- very difficult to diagnose/repair
- not necc. interchangable

ideal:

- 1 r256 per axis
- no multiplexing
- parallel operation
- expensive (~\$10k/scope)

Telescope

Crypt

aob - r256 per axis

compromise:

- hybrid
- replace aob control and eventually TEMA
- grouped r256's with 5 multiplexors
- only multi. those that don't need parallel operation (covers & lids)
- need to design multiplexor
- relatively easier to isolate and replace components
- expensive (~\$5k/scope)

compromise:

- hybrid
- replace aob control and eventually TEMA
- grouped r256's with 5 multiplexors
- only multi. those that don't need parallel operation (covers & lids)
- need to design multiplexor
- relatively easier to isolate and replace components
- expensive (~\$5k/scope)

AOB/TEMA/HUT

- RPC to control dehumidifiers and heaters based on minions (2/3 voting scheme)
- Cable wrap concerns
 - sharp edges
 - friction welding
 - routes
 - reduced cables in wrap
- Heidenhain encoders/tape
 - some show wear/damage

Impact of SPICA and moving actuators:

- 17 cases of beacon flat/m7 motors stuck / runout
- All required working on the motors and realigning
- All during SPICA runs or eng.
- Each was few hours of work.

- - same for aob

Drive Upgrade

- S2 done and has been in use for a season, W1 after meeting
- Existing drives are ~25 years old & discontinued
- Reduce vibration, improve tuning
- Prototype assembly and short pivot arm done
- 12 drives and motors (plus spare) in hand from Parker
- Drive assemblies fabrication done (2 done, 10 remaining) ahead of tariffs
- Spare Dojen obtained

Install during daytime, but some nights needed for software and tuning

Each column is a star slew
The elevation tracking is better than azimuth

Tiptilt, PZT issues, actuators, hexapods?

- Tiptilt concerns
 - PI PZT's discontinued in 2018, could be sent for repair but limited
 - use DM for TT correction (but can't do on-sky reconstructor in this case)
 - actuators were discontinued in 1992
 - replace PI PZT's with Thorlabs PZT's or newer PI actuators+PZT
 - get one hexapod (~\$50k) and then we have spare parts for rest of array
 - 11cm: spider \rightarrow back of M2
 - adjusting spider could get few more cm
 - M2, d=140mm
 - may need a piezo tiptilt system b/t hexapod and M2, but depends
 - needs to function hanging upside down

New fiber network (new IP pool)

new spycam system (3 per telescope up to 4k+audio, 3 w/ pan/tilt in lab), more sensors (rh, temp) and control

- **Phase 0**: AC at telescopes
- **Phase 0.1**: new IR dichroics for beam samplers
 - Improve multi-wavelength performance
 - Wider bandwidth for better STST performance
 - CRED1, bluer for science, WFS on a single chip?
 - Dual-star phase reference mode
- **Phase 0.5**: upgrades of telAO
 - Redesign M2, go to focal design?
- **Phase 1**: central 2m + AO + OPLE upgrades
 - LabWFS control new telDM,
 - Longer delay + better metrology or double-decker carts
 - Visible-sensitivity, resolution, stability → needed for nulling
- **Phase 2**: replace 1m's with 2m's
 - Propagate upgrades from central 2m
- **Phase 3**: full CMA outer km baseline fiber array

Central 2m Telescope

- Vacuum beam transport with fiber option
- Bundled with Delay Line Upgrades

- Review the current state of capabilities & techniques in optical/IR interferometry
- Discuss quantum-enhanced methods for pushing current limitations on spatial resolution
- Establish collaborations between the astronomy & quantum communities to address science requirements and technical challenges

"Performance of the Khabiboulline Configuration of Quantum Enhanced Long Baseline Optical Interferometry"- Mcclinton & Ridgeway (AAS 2025)

open-air or quantum-enhanced future beam transport?

Initial HBT experiments planned this yr with BNL

"Towards quantum-enhanced long-baseline optical/near-IR interferometry" Rajagopal et al. (2024)

"Towards Quantum Telescopes: Demonstration of a Two-Photon

Interferometer for Quantum-Assisted Astronomy" - Crawford et al. (2023)

Charting '

Quantum

Risks:

very uncertain US environment

Funding options:

- NSF (66% cut proposed)
- private: Heising-Simons Foundation, Keck, Kavli Instititute, others
- extend the consortium?
- other universities?
- National lab status?
- International partnerships?

CHARA in 2040

(near future plans)

- Telescope dichroic upgrade
- Automated alignment/tracking
- Upgrade labAO system
- Optimizing multi-wavelength simultaneous observations
- Fibers to all telescopes
- W5 site (1100m)
 - extended/double-pass delay
- Up to 300 nights over three years of open access time via NOIRLab.

(bigger future plans)

- Central 2m telescope
- $1m's \rightarrow 2m's$
- Km+ baselines
- AO/ople/lab upgrades
- Off-target phase tracking
- Nuller
- Future beam transport
- Michelson Array

