Long-term CHARA observations of Binary Cepheids Alexandre Gallenne Universidad de Tarapacá Chile - Cepheids are important standard candles for the extragalactic distance scale - When in a binary system (> 80%), we should be able to: - Have an independent distance measurement: test Gaia and P-L relations - Measure the dynamical mass: test evolutionary models - Challenging targets because we need to detect the companions both spectrally and spatially: - Companions are mostly early-type main-sequence → high contrast - Lines are usually broad and blended - Orbits are within 50mas UV spectroscopy necessary Long-baseline interferometry needed ## First binary Cepheid observed with MIRC in 2012: V1334 Cyg Gallenne et al. (2013) SB1 system: masses and distance are degenerate parameters | | Spectroscopy only
(Evans 2000) | This work | |----------------------------------|-----------------------------------|-----------------------| | Orbit | | | | $P_{\rm orb}$ (days) | 1937.5 ± 2.1 | 1938.6 ± 1.2 | | $T_{\rm p}$ (HJD) | 2443607 ± 14 | 2443616.1 ± 7.3 | | e | 0.197 ± 0.009 | 0.190 ± 0.013 | | $K_1 \text{ (km s}^{-1}\text{)}$ | 14.1 ± 0.1 | 13.86 ± 0.17 | | $v_{\gamma} (\text{km s}^{-1})$ | -1.8 ± 0.1 | -1.9 ± 0.1 | | ω (°) | 226.3 ± 2.9 | 228.7 ± 1.6 | | Ω (°) | _ | 206.3 ± 9.4 | | a (mas) | _ | 8.54 ± 0.51 | | i (°) | _ | 124.7 ± 1.8 | | m_H | - | 8.47 ± 0.15 | | Pulsation | | | | P_{puls} (days) | 3.33251 ± 0.00001 | 3.33250 ± 0.00002 | | T_0^a (HJD) | 2 440 124.5330 | 2 440 124.5330 | | A_1 | - | 4.35 ± 0.15 | | A_2 | _ | 1.81 ± 0.11 | | B_1 | - | 0.08 ± 0.06 | | B_2 | _ | 2.72 ± 1.30 | $d \ge 690 pc$ $M_2 \ge 3.6 M_{\odot}$ I monitored the orbit with various instruments Gallenne et al. (2018) - → Accurate & precise distance of a Cepheid (1%) - Accurate & precise mass of a Galactic Cepheid (3%) Comparison with Gaia and P-L relations: Comparison with prediction from evolutionary models: Dynamical mass smaller than the predicted mass: mass loss, binary merger, evolutionary model? New results for another Cepheids, SU Cyg: Gallenne et al. (2025) - → Most accurate & precise distance of a Cepheid (0.5%) - Most accurate & precise mass of a Galactic Cepheid (1%) Comparison with Gaia and P-L relations: ## Comparison with prediction from evolutionary models: $\Omega/\Omega_{crit} = 0$ $\Omega/\Omega_{crit} = 0.30$ $\Omega/\Omega_{crit} = 0.30$ $\Omega/\Omega_{crit} = 0$ \cdots $\Omega/\Omega_{crit} = 0.30$ **PARSEC** Z = 0.01 $\Omega/\Omega_{crit} = 0.30$ $\Omega/\Omega_{crit} = 0$ $\Omega/\Omega_{crit} = 0.30$ $\Omega/\Omega_{crit} = 0$ $\Omega/\Omega_{crit} = 0.30$ **GENEVA** Other published SB1 systems, assumed distances to obtain the Cepheid masses: Evans et al. (2024a) ## **Conclusions** - LBI efficient in detecting bright companions of Cepheids - But still challenging due to the high contrast - Next step of this project is SPICA with a more favourable observing wavelength - PhD student starting in October: Combination of Gaia epoch astrometry, interferometry & RVs - Large survey of southern bright Cepheids requested with GRAVITY - Final goals: - Obtain precise and accurate mass of several Cepheids - Improve the accuracy of the Gaia parallax - Obtain an unbiased P-L relation Thank you