

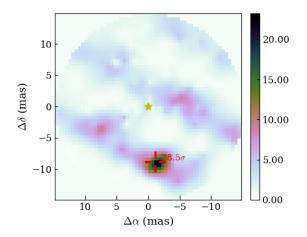
Long-term CHARA observations of Binary Cepheids

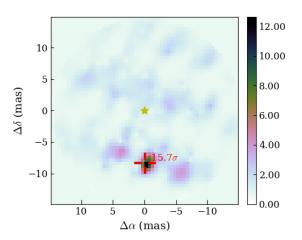
Alexandre Gallenne Universidad de Tarapacá Chile

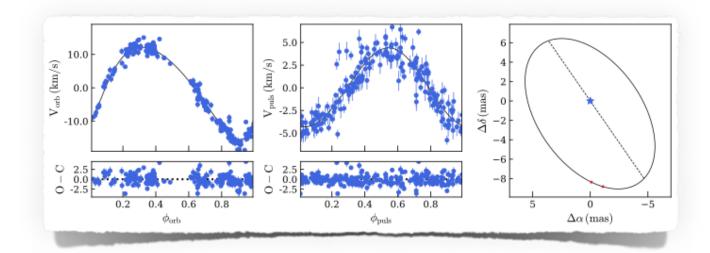
- Cepheids are important standard candles for the extragalactic distance scale
- When in a binary system (> 80%), we should be able to:
 - Have an independent distance measurement: test Gaia and P-L relations
 - Measure the dynamical mass: test evolutionary models
- Challenging targets because we need to detect the companions both spectrally and spatially:
 - Companions are mostly early-type main-sequence → high contrast
 - Lines are usually broad and blended
 - Orbits are within 50mas

UV spectroscopy necessary

Long-baseline interferometry needed

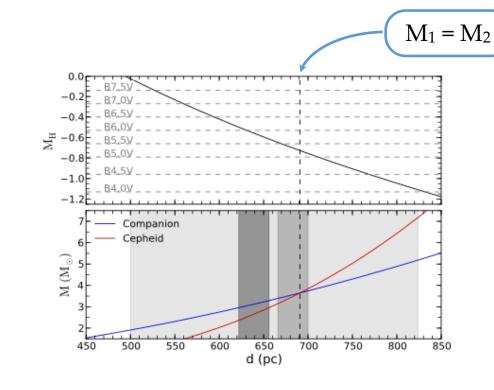






First binary Cepheid observed with MIRC in 2012: V1334 Cyg

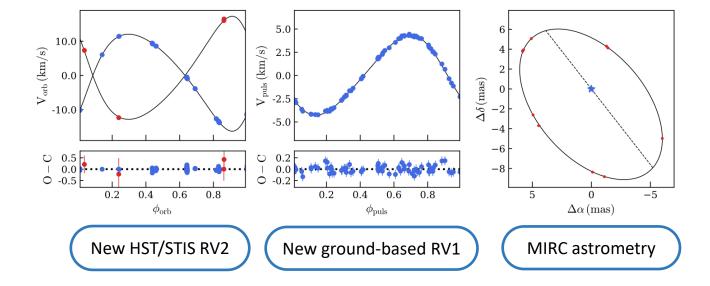
Gallenne et al. (2013)



SB1 system: masses and distance are degenerate parameters

	Spectroscopy only (Evans 2000)	This work
Orbit		
$P_{\rm orb}$ (days)	1937.5 ± 2.1	1938.6 ± 1.2
$T_{\rm p}$ (HJD)	2443607 ± 14	2443616.1 ± 7.3
e	0.197 ± 0.009	0.190 ± 0.013
$K_1 \text{ (km s}^{-1}\text{)}$	14.1 ± 0.1	13.86 ± 0.17
$v_{\gamma} (\text{km s}^{-1})$	-1.8 ± 0.1	-1.9 ± 0.1
ω (°)	226.3 ± 2.9	228.7 ± 1.6
Ω (°)	_	206.3 ± 9.4
a (mas)	_	8.54 ± 0.51
i (°)	_	124.7 ± 1.8
m_H	-	8.47 ± 0.15
Pulsation		
P_{puls} (days)	3.33251 ± 0.00001	3.33250 ± 0.00002
T_0^a (HJD)	2 440 124.5330	2 440 124.5330
A_1	-	4.35 ± 0.15
A_2	_	1.81 ± 0.11
B_1	-	0.08 ± 0.06
B_2	_	2.72 ± 1.30

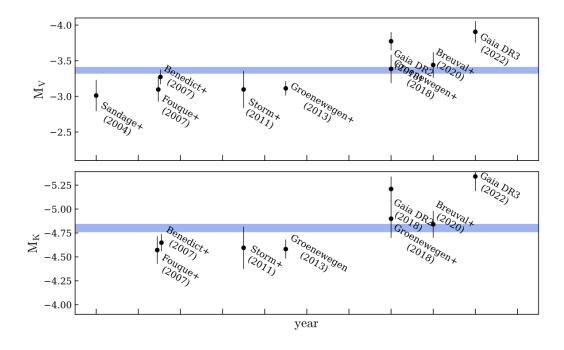
 $d \ge 690 pc$ $M_2 \ge 3.6 M_{\odot}$

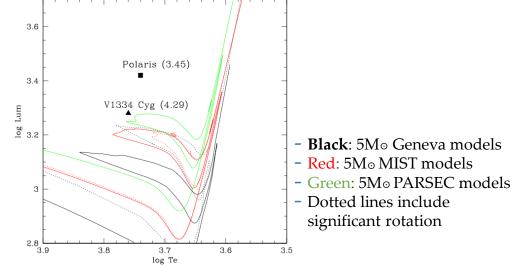


I monitored the orbit with various instruments

Gallenne et al. (2018)

- → Accurate & precise distance of a Cepheid (1%)
- Accurate & precise mass of a Galactic Cepheid (3%)

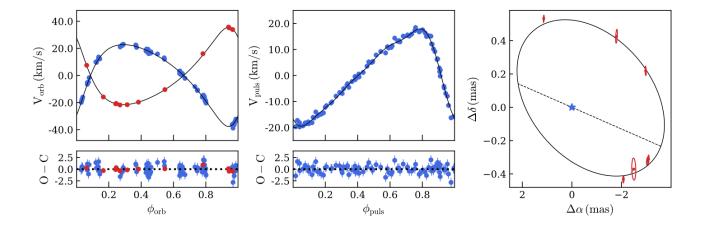




Comparison with Gaia and P-L relations:

Comparison with prediction from evolutionary models:

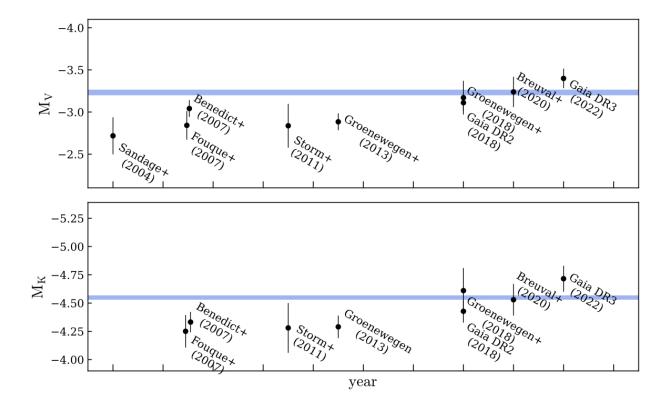
Dynamical mass smaller than the predicted mass: mass loss, binary merger, evolutionary model?



New results for another Cepheids, SU Cyg:

Gallenne et al. (2025)

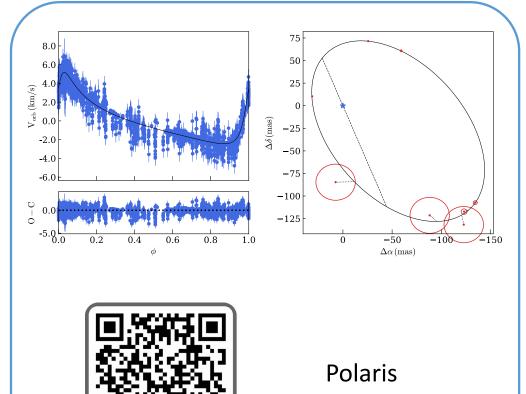
- → Most accurate & precise distance of a Cepheid (0.5%)
- Most accurate & precise mass of a Galactic Cepheid (1%)

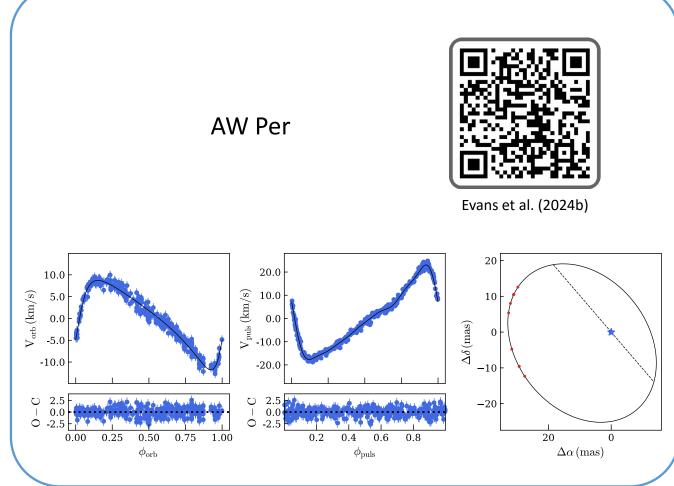


Comparison with Gaia and P-L relations:

Comparison with prediction from evolutionary models:

 $\Omega/\Omega_{crit} = 0$ $\Omega/\Omega_{crit} = 0.30$ $\Omega/\Omega_{crit} = 0.30$ $\Omega/\Omega_{crit} = 0$ \cdots $\Omega/\Omega_{crit} = 0.30$ **PARSEC** Z = 0.01 $\Omega/\Omega_{crit} = 0.30$ $\Omega/\Omega_{crit} = 0$ $\Omega/\Omega_{crit} = 0.30$ $\Omega/\Omega_{crit} = 0$ $\Omega/\Omega_{crit} = 0.30$ **GENEVA**





Other published SB1 systems, assumed distances to obtain the Cepheid masses:

Evans et al. (2024a)

Conclusions

- LBI efficient in detecting bright companions of Cepheids
- But still challenging due to the high contrast
- Next step of this project is SPICA with a more favourable observing wavelength
- PhD student starting in October: Combination of Gaia epoch astrometry, interferometry & RVs
- Large survey of southern bright Cepheids requested with GRAVITY
- Final goals:
 - Obtain precise and accurate mass of several Cepheids
 - Improve the accuracy of the Gaia parallax
 - Obtain an unbiased P-L relation

Thank you

