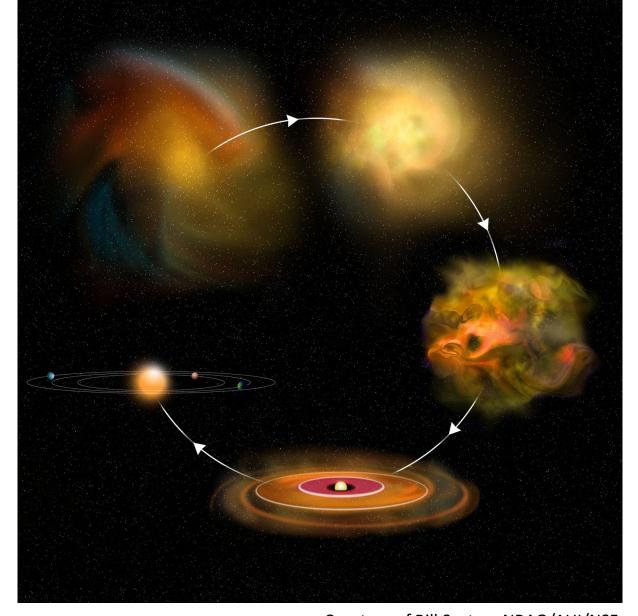


A Study of Rotation, Convection, and Activity Across the Kraft Break

Colin Kane, Georgia State University

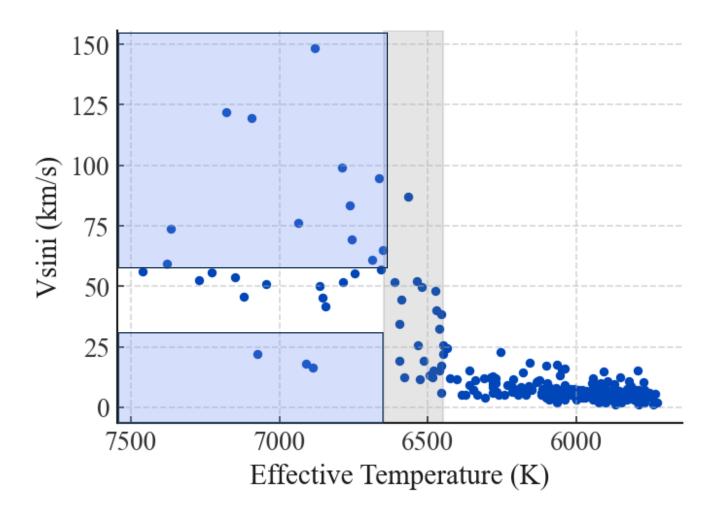
In collaboration with R. White, J. Jones, B. Flores, F. Baron, D. Mourard, A. Domiciano, R. Ligi, B. Montesinos, & J. Hom



Rotation

Stars form from large gaseous nebula

Conservation of angular momentum causes stars to spin up



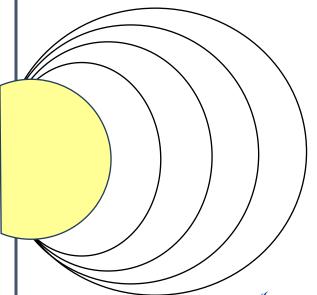
Rotation

- Not all stars remain rapidly rotating
- Separation between slow and rapid rotators at F4/F5
 - Kraft Break (Kraft 1967;
 Beyer & White 2024)
- The Coolest Rapid Rotators
- Some post-Kraft Break slow rotators

The Kraft Break and Convection

Why do stars spin down?

Magnetic Braking


Stellar winds coupled with

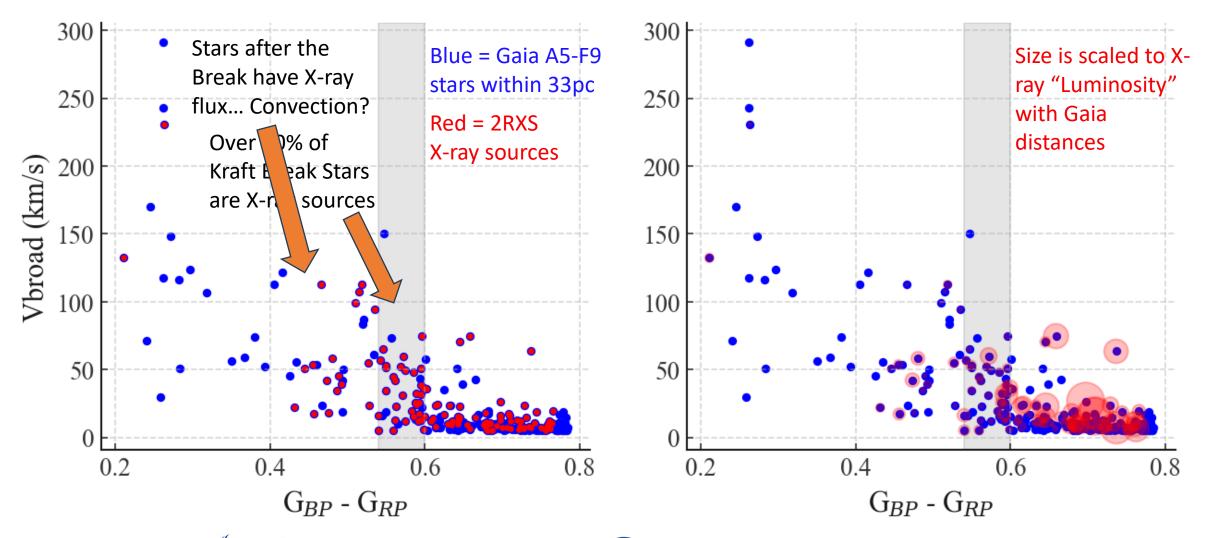
magnetic fields

Why does this only occur for stars cooler than F5?

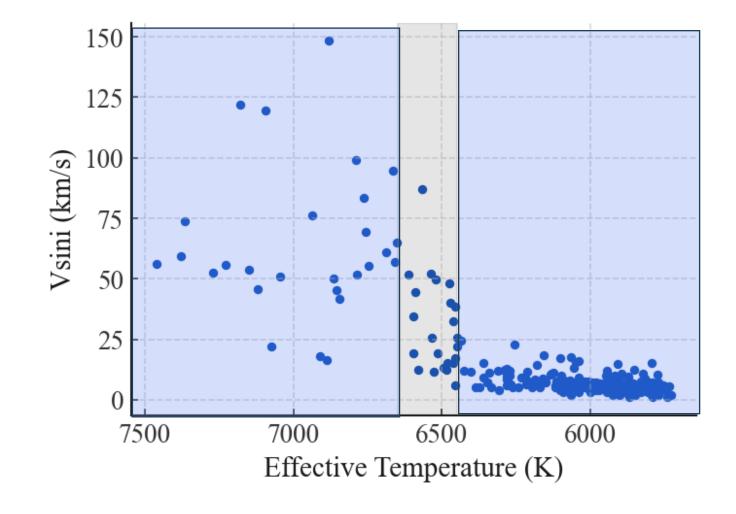
Convection

Stellar dynamo is necessary for magnetic field generation

Colin Kane ckane6@gsu.edu

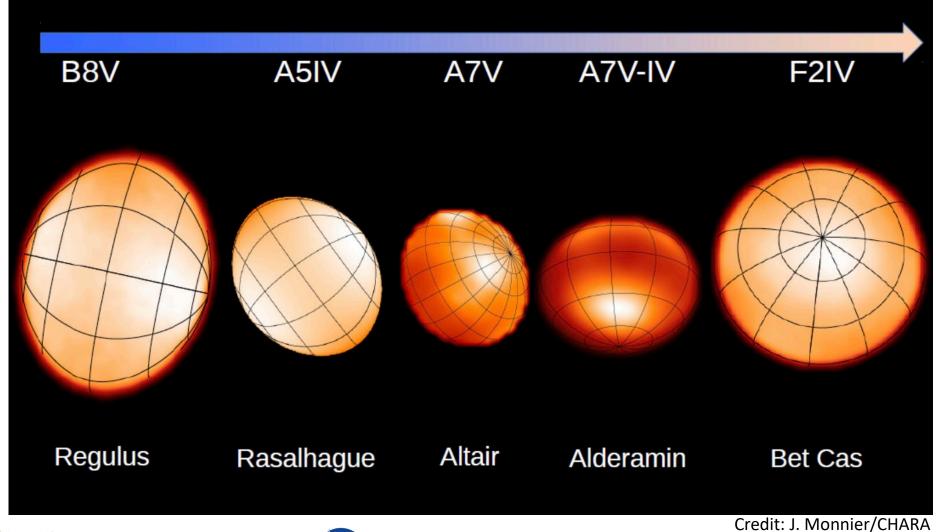


Convection and Activity



Why Stars spin slowly

What Happens
When they
spin fast



Gravity Darkening

Rapid rotation causes oblate stars

Equatorial regions are cooler and dimmer

Convection may
be the reason
behind discrepant
gravity darkening
profiles (e.g β Cas)

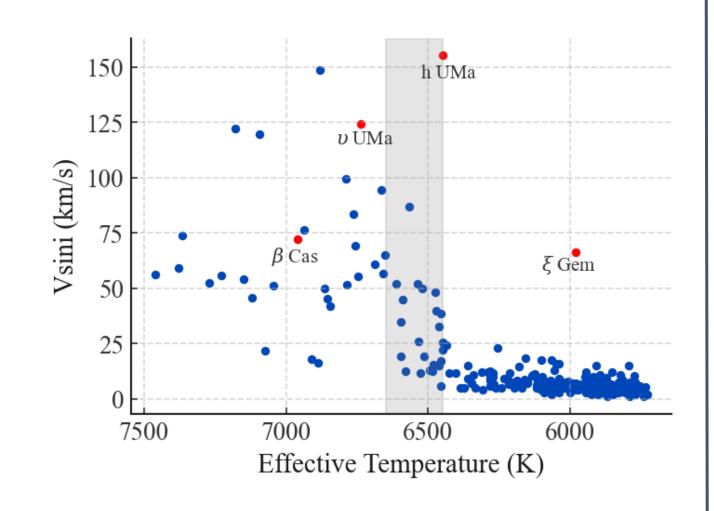
Imaging the Coolest Rapid Rotators

Can gravity darkening cause convection and activity in the coolest rapidly rotating stars?

Search for Pole-on **Rapid Rotators**

Are hot slow rotators a product of inclination or a physical spin down mechanism?

Imaging the Coolest Rapid Rotators



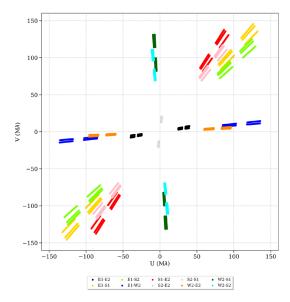
Imaging the Coolest Rapid Rotators

Sample

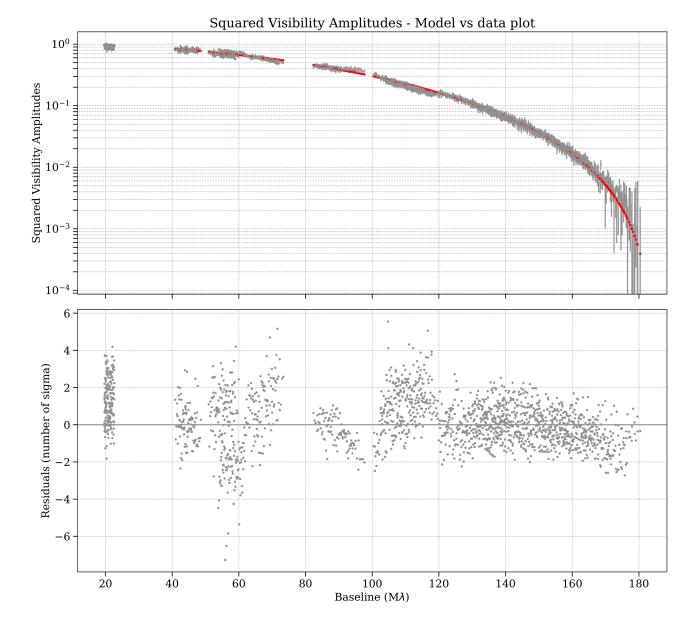
- F V & IV spectral types
- > 1.0 mas
 - Cruzalebes et al. 2019
- Vsini > 65 km/s
 - Shroder et al. 2009

- This project had time:
 - March 2024
 - October 2024
 - March 2025
 - MIRC-X, MYSTIC, and SPICA
 - Were not able to get any usable on sky data



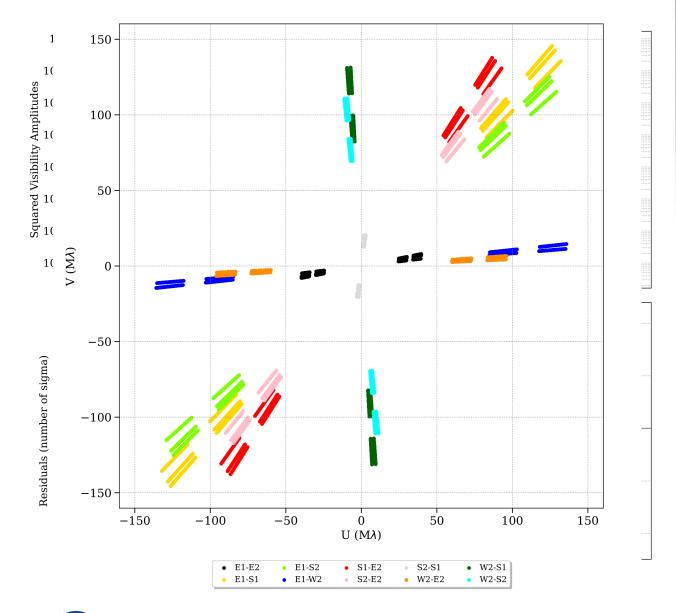


- December 2023
 - Jeremy Jones collected 2 brackets of 5T data ξ Gem
 - MIRC-X and MYSTIC
- Sept 2024 & Dec 2024
 - Justin Hom collected 1 bracket in Sept 2024 and 2 brackets in Dec 2024 on β Cas with 6T
 - MIRC-X and MYSTIC
- Special thank you to both for sharing their data



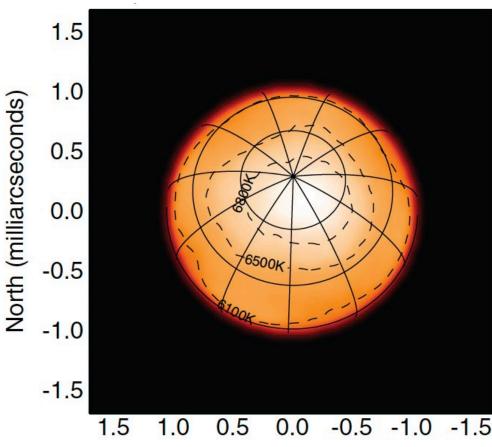
ξGem

- Measured UDD of 1.36 mas
 - Using OITOOLS model fitting routine
- Missing long baseline data
- 2nd lobe information necessary for determining darkening profiles



β Cas

- Noisy longer baseline data (Dec 2024)
 - Not used when measuring diameter/future image reconstructions
- Measured UDD of 1.98 mas
 - Using OITOOLS model fitting routine
 - Consistent with previous CHARA observations
 - Che et al. 2011



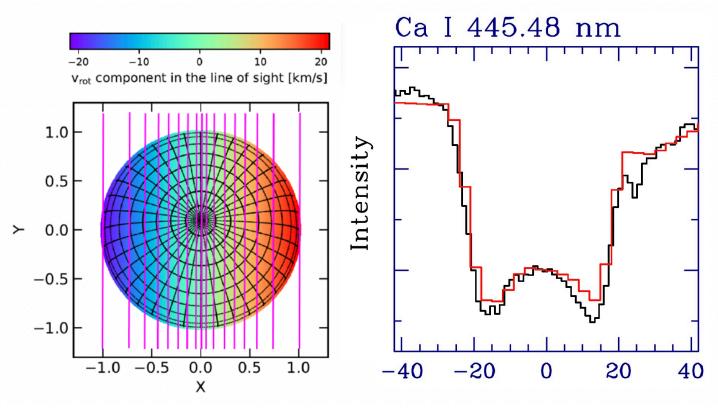
Future CHARA work

- Hopeful to get more observations
 - Trying to prioritize long baselines
- Use ROTIR2 to reconstruct images of the 4 Coolest Rapid Rotators (Thanks Fabien Baron)
- Separate limb darkening and gravity darkening
- Look for equatorial spots

East (milliarcseconds)

Che et al. 2011

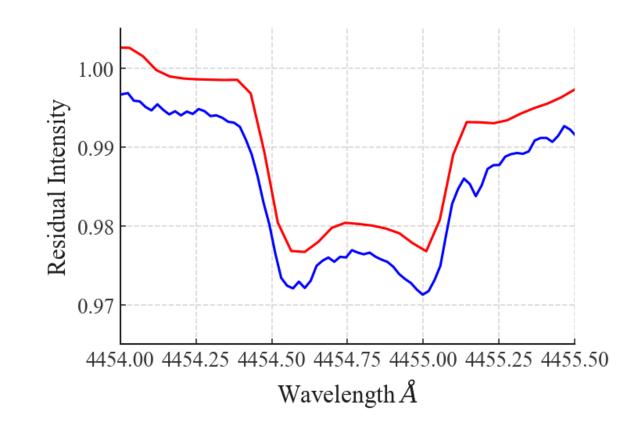
The Search for Pole on Rapid Rotators



The Search for Pole on Rapid Rotators

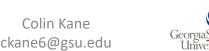
- Gravity darkening can cause changes in ionization fractions from the pole to the equator
- When seen near pole on this effect creates saddle shaped profile

Montesinos 2024



Vega the Known Pole-on Rapid Rotator

- Known Pole-on rapid rotator
 - Aufdenberg et al. 2006
 - Monnier et al. 2012
- Fastrot-spec able to model the saddle shaped profiles of Vega
- High S/N, high dispersion spectra shows the same profile
 - Takeda et al. 2007
- Can we find more like Vega?

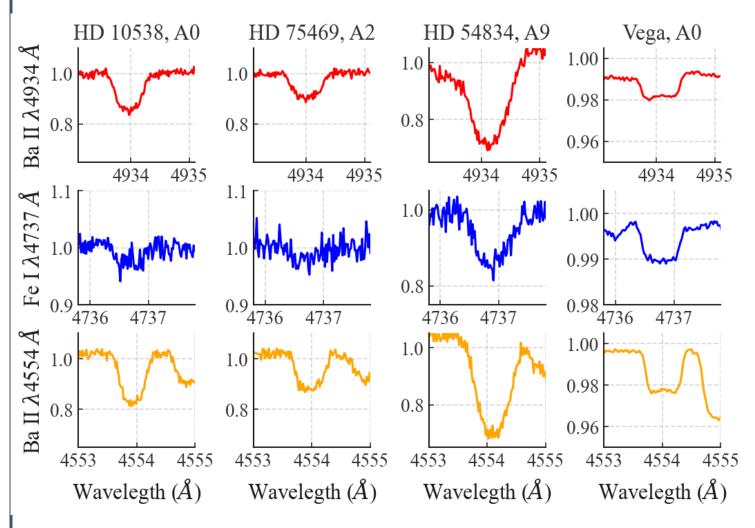


- Selected A and F stars with vsinis close to that of Vega (19
 - -29 km/s
 - Zorec & Royer 2012
- Excluded:
 - Close binaries
 - Chemically Peculiar stars
 - Stars dimmer G mag of 7.0

HD	SpTp	RA	DEC	G	vsini	$\log T$	Observed?
Number		О	о	mag	${ m km~s^{-1}}$	K	
197541	F0IV/V	311.34937	-30.47821	6.71	29	3.844 ± 0.002	
193432	B9IV	305.16590	-12.75908	4.75	24	4.004 ± 0.003	
161840	B8V	267.29365	-31.70321	4.76	24	4.044 ± 0.003	Y
101615	A0V	175.33246	-43.09567	5.53	19	3.982 ± 0.004	
96723	A1V	167.06574	-29.97249	6.47	23	3.956 ± 0.005	Y
87344	B8V	151.01171	-18.10141	6.25	28	4.029 ± 0.002	
80094	B7IV	138.82350	-58.38838	6.00	24	4.109 ± 0.003	Y
75469	A2Vs	132.68801	+18.83218	6.40	19	3.975 ± 0.007	
68423	B6Ve	122.10267	-63.80082	6.31	26	4.092 ± 0.003	Y
54834	A9V	107.46735	-16.23473	6.55	23	3.857 ± 0.002	Y
44783	B8Vn	096.00951	+08.88501	6.23	22	4.043 ± 0.002	Y
43179	B7V	093.38950	-29.39574	6.51	24	4.092 ± 0.003	
42035	B9V	092.19596	+08.66943	6.53	24	4.019 ± 0.002	
40446	A1Vs	089.70655	+00.55298	5.19	27	3.980 ± 0.007	Y
40136	F1V	089.10122	-14.16770	3.64	26	3.846 ± 0.003	Y
39985	A0IV	089.11681	+09.50940	5.96	28	4.011 ± 0.002	Y
39945	A5V	088.66316	-26.66027	6.82	20	3.914 ± 0.011	Y
37788	F0IV	085.27331	+00.33775	5.85	29	3.852 ± 0.002	Y
28114	B6IV	066.58793	+08.59027	6.03	24	4.150 ± 0.003	Y
10538	A0V	025.51247	-36.83231	5.70	20	3.985 ± 0.006	Y

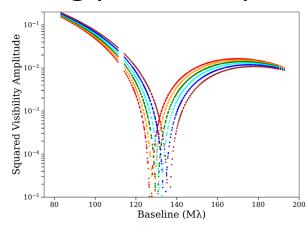
- SMARTS/CTIO 1.5m telescope with CHIRON echelle spectrograph
- Using the slit mode
 - (R ~ 90,000)
- 13 of the 20 have already been observed

HD	SpTp	RA	DEC	G	vsini	$\log T$	Observed?
Number		o	o	mag	${ m km~s^{-1}}$	K	
197541	F0IV/V	311.34937	-30.47821	6.71	29	3.844 ± 0.002	
193432	B9IV	305.16590	-12.75908	4.75	24	4.004 ± 0.003	
161840	B8V	267.29365	-31.70321	4.76	24	4.044 ± 0.003	Y
101615	A0V	175.33246	-43.09567	5.53	19	3.982 ± 0.004	
96723	A1V	167.06574	-29.97249	6.47	23	3.956 ± 0.005	Y
87344	B8V	151.01171	-18.10141	6.25	28	4.029 ± 0.002	
80094	B7IV	138.82350	-58.38838	6.00	24	4.109 ± 0.003	Y
75469	A2Vs	132.68801	+18.83218	6.40	19	3.975 ± 0.007	
68423	B6Ve	122.10267	-63.80082	6.31	26	4.092 ± 0.003	Y
54834	A9V	107.46735	-16.23473	6.55	23	3.857 ± 0.002	Y
44783	B8Vn	096.00951	+08.88501	6.23	22	4.043 ± 0.002	Y
43179	B7V	093.38950	-29.39574	6.51	24	4.092 ± 0.003	
42035	B9V	092.19596	+08.66943	6.53	24	4.019 ± 0.002	
40446	A1Vs	089.70655	+00.55298	5.19	27	3.980 ± 0.007	Y
40136	F1V	089.10122	-14.16770	3.64	26	3.846 ± 0.003	Y
39985	A0IV	089.11681	+09.50940	5.96	28	4.011 ± 0.002	Y
39945	A5V	088.66316	-26.66027	6.82	20	3.914 ± 0.011	Y
37788	F0IV	085.27331	+00.33775	5.85	29	3.852 ± 0.002	Y
28114	B6IV	066.58793	+08.59027	6.03	24	4.150 ± 0.003	Y
10538	A0V	025.51247	-36.83231	5.70	20	3.985 ± 0.006	Y



Results and Future Work

- None of the spectral lines examined have shown the saddle shaped profiles
- Still have stars in the observing queue



Summary

Imaging the Coolest Rapid Rotators

- Can gravity darkening induce convection, activity?
- More long baseline data is necessary to search for signatures (e.g. darkening profiles, spots)

HD 10538, A0 HD 75469, A2 HD 54834, A9 Vega, A0 1.0 1.0 4934 4935 1.1 4934 4935 1.0 4934 4935 1.0 4934 4935 1.0 4934 4935 1.0 4934 4935 1.0 4934 4935

The Search for Pole-on Rapid Rotators

- Saddle shape profiles of Vega are able to be modelled
- None of the 13 Vega like stars show this signature
- More spectra are in CHIRON observing queue

Thank you

Question?

