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Correlation measurement and group delay
tracking with a noisy detector

Theo ten Brummelaar

ABSTRACT: The use of a noisy detector for group delay tracking and/or correlation measure-
ment in optical stellar interferometry is analyzed. Expressions are derived for the signal-to-noise
ratio of correlation measurement and the probability of tracking loss in the presence of detector
noise. It is shown that such a detector can be suitable for either measurement. For example, the
high quantum e�ciency of modern CCDs can o�set the readout noise to a large extent, making
them a good candidate for use in fringe tracking.

1. INTRODUCTION

When choosing a detector for optical stellar interferometry, many often conicting require-
ments come into play, for example: detector quantum e�ciency (DQE), noise, number of
pixels, and cost. Ideally, a high DQE, low or even zero noise, multipixel detector is required,
and all this at a reasonable cost. A popular detector for interferometry is the avalanche
photo diode, or APD (Nightingale 1991), which is photon noise limited and, compared to
photomultipliers and image intensi�ers, has a high DQE. Unfortunately for many tasks, such
as group delay tracking (GDT) or multiple band correlation measurement, large numbers
of pixels are required. APD's are single pixel devices, and the �nancial and logistical cost
of using them for multiband observation can be high. Photon noise limited array detectors
are available | for example, the PAPA camera (Papaliolios & Mertz 1982) | although
their DQE to date has been rather poor (Lawson 1993). Cameras based on charge coupled
devices (CCD) are now being made with extremely high DQE and relatively low readout
noise (Beletic et al. 1991). The question that then arises is: does the high DQE of the CCD
compensate for the addition of readout noise?

There have been many studies of the e�ects of photon noise in optical stellar interferometry
on fringe correlation measurement (Tango & Twiss 1980, Roddier 1986, Buscher 1988,
Kulkarni et al. 1991, Beletic & Goody 1992) and group delay tracking (Lawson 1994,
Beletic 1994). Except for the work done by Beletic (1994) for the Center for High Angular
Resolution Astronomy (CHARA) Array (McAlister et al. 1994), all of these works assume
a photon noise limited detector and ignore the e�ects of detector noise.

In the analysis that follows, equations are derived for the signal-to-noise (SNR) ratio of
correlation measurement as well as for the probability of tracking loss using group delay

1Center for High Angular Resolution Astronomy, Georgia State University, Atlanta GA 30303-3083
Tel: (404) 651-2932, FAX: (404) 651-1389, Anonymous ftp: chara.gsu.edu, WWW: http://www.chara.gsu.edu

TR 24 � 1



TECHNICAL REPORT NO. 24

tracking in the presence of detector noise. Using these expressions, it is demonstrated that
it is possible to measure fringe correlation and perform group delay tracking with a noisy
detector as long as its DQE is high. In the case of group delay tracking, a CCD would
be an excellent choice for a detector. In the case of correlation measurement it is shown
that a CCD could be used but may not be the detector of choice. The decision will then
come down to logistics and cost considerations. For example, if one already has invested in
a highly e�cient but noisy detector for fringe tracking, why not also use it for correlation
measurement even though it may not be ideal for this application?

2. FRINGE AND DETECTOR MODEL

We will consider a two-beam setup for both the case of correlation measurement and that
of fringe tracking. The extension to multiple beams then follows relatively easily. When
combining two beams, one has the choice of using either the pupil or the image plane. From
the point of view of photon noise, Roddier (1986) claims that the pupil plane provides
better results whereas Buscher (1988) claims they are equivalent. We shall not specify
which plane will be used but will consider two tilt corrected beams combined and imaged
through a dispersive element onto a detector. These beams can either be combined in the
pupil plane with measurements taken on either side of a beam splitter, or they can be
combined in the image plane and viewed on a single array detector. The two methods are
equivalent as far as the analysis to follow is concerned. For the sake of generality we assume
that the fringes are measured on a 2-dimensional array detector where in one dimension
the fringes are spread in phase and in the second dimension they are spread in wavelength.
A temporal fringe encoding scheme, such as the one used in the Mark III interferometer
(Shao et al. 1988) or that proposed by Tango & Twiss (1980), is equivalent to the phase
dimension of an array detector. Alternatively a constant tilt could be introduced into one
beam, or an image plane combination scheme could be used to introduce the phase spread
on a detector. An example optical layout is given in Figure 1.

The two beams entering the system are assumed to have been tilt corrected and to have
passed through an optical path length equalizer (OPLE) to arrive at the beam combiner
with an optical path length di�erence (OPD) of x meters. Atmospheric e�ects beyond
piston and tilt and residual aberrations due to the optical system will not be included in
this analysis but are included in the coherence transfer factor � such that the measured
visibility magnitude V is given by

V (�) = � j(�)j= �s �t �o j(�)j (1)

where (�) is the wavenumber (� = 1=�) dependent visibility magnitude of the object at
the current projected baseline. Expressions for the coherence transfer factor can be found
for spatial e�ects of the atmosphere �s in Tango & Twiss (1980) and temporal atmospheric
e�ects �t in Buscher (1988). The coherence transfer factor for the optical system itself �o,
including any possible high order adaptive optics, can be approximated by the Strehl ratio
for the system (ten Brummelaar et al. 1995).

The spread in phase across the �rst dimension of the detector will be written as

�i =
2�i

P�
s� (2)

where i is the phase pixel number ranging from 1 to P� and s� is the spatial frequency of
the fringes formed on the detector. In the example optical con�guration given in Figure 1,
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FIGURE 1. An optical layout for combining two beams. The two beams are combined in the
pupil plane using a at beam splitter. Each output beam is then fed through a dispersive element
and imaged onto a detector.

there are only two sets of phase pixels, one on each of the detectors shown, with a phase
di�erence of � radians. Thus in this case P� = 2 and s� = 1.

The pixels in the spectral dimension of the detector are arranged evenly in wavenumber �.
This can be done by rebinning the data collected by a detector linear in space, a process
that can be performed noiselessly and on-chip in the case of a CCD or by software for a
detector like the PAPA camera. Alternatively, one could use a dispersive optical system
that directly produces a spectrum linear in space and wavenumber such as a grism (Traub
1990). If the pixels in each channel range from wavenumber �1 to wavenumber �P� the
central wavenumber of the jth pixel is

�j = �1 +
j

P�
(�P� � �1) (3)

where P� is the number of pixels across the spectrum. Each spectrum formed in this way
will contain channel fringes with a spatial frequency directly related to the OPD x(t) via

s�(t) = x(t)(�P� � �1) (4)

which is the basis of group delay tracking to be discussed in Section 5.

We now write the light intensity measured in the ith phase pixel (1 � i � P�) and the jth
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spectral pixel (1 � j � P�) as

Iij(t) = I0 �

2
66641 + V (�j) cos

0
BBB@ 2�i

P�
s�| {z }

PhaseTerm

+
2�j

P�
s�(t)| {z }

SpectralTerm

+ �(t)|{z}
OtherTerms

1
CCCA
3
7775 (5)

where I0 is the expected classical intensity from both apertures in a single pixel including
the atmosphere and optical system performance and

�(t) = 2��1 x(t)� 2�s�
P�

+�(�j) + �atm(t): (6)

The quantity �(�j) is the visibility phase, and �atm(t) is the phase di�erence introduced
by atmospheric turbulence. This intensity pattern is sampled by the detector at a sample
time � which will be of the order of the temporal coherence time of the atmosphere �0.

We are now in a position to write an expression for the expected number of counts measured
in a given pixel during a single sample period. The count of photon events in phase pixel i
and spectral pixel j during sample period k is written

nijk = cijk + rijk (7)

where cijk is the signal term and rijk is the noise term. The signal cijk follows Poisson
statistics with the expectation value related to the classical intensity and written

hcijki = N �
�
1 + V (�j) cos

�
2�i

P�
s� +

2�j

P�
s�(k�) + �(k�)

��
: (8)

Here, N is the expected photon count corresponding to an intensity of I0 taking into account
the quantum e�ciency of the detector. One must be careful about the de�nitions of N and
V , especially when comparing expressions for SNR in the literature, as they vary from paper
to paper. In this work, the de�nition for V is given in Equation 1 while we will use several
forms for the photon count N . With no subscript, N will denote the expected number of
photon events in a single pixel during one sample. Adding subscripts to N will denote the
sum over subsets of pixels. Thus N� is the expected number of counts in a single phase
channel, summed across all the spectral pixels, while N� denotes the expected number
of counts in a single spectral channel, summed across all the phase pixels. The expected
number of detected photon events across all pixels is written N��. Since the spectral pixels
are arranged evenly in wavenumber space, they will not necessarily contain the same average
counts per cycle; however, a good approximation is that

N�� = P� �N� = P� �N� = P� � P� �N: (9)

When working through the SNR calculations, it is easiest to use the expected number of
photon events in a single pixel N . However, when comparing these expressions it is best to
use the number of events in an entire spectral channel N�.

The angular brackets in Equation 8 denote an ensemble average, that is, if one could freeze
the atmosphere and the OPD at their positions at time k� and make multiple measurements
we would �nd that cijk would follow Poisson statistics with an expected value given by
Equation 8. The noise term rijk will be modeled as a Gaussian process with zero mean
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and a standard deviation of �. In the case of a CCD, � corresponds directly to the readout
noise �gure.

Since the signal occurs at a single spatial frequency, either in the spectral pixels or in the
phase pixels, a common way to approach the analysis of the signal is to perform a discrete
Fourier transform (DFT) and look for a peak in the power spectrum. There will be P0=2
channels of data in the power spectrum, where P0 is either P� or P� , and if the fringe spatial
frequency corresponds exactly to one of these channels we can write the DFT of the signal
as

j�(s)j =
8<
:

N0 for s = 0
N0V=2 for s = s0
0 otherwise

(10)

where N0 is either N� or N� and s0 is either s� or s� depending on whether the DFT is
taken across the spectral or phase direction of the detector. There will also be noise terms
in this expression, and, if the fringe spatial frequency does not correspond exactly to a
frequency bin of the DFT, spectral leakage will occur and the power will be spread amongst
the adjacent harmonics. These matters will be taken up in a later section.

3. STATISTICAL METHODS

Both the signal term cijk and the noise term rijk follow standard statistical relationships. For
the calculations that follow, we will require terms up to and including the fourth moment.
In the case of the signal cijk , the following relationships apply

hc2ijki = hcijki2 + hcijki
hc3ijki = hcijki3 + 3hcijki2 + hcijki
hc4ijki = hcijki4 + 6hcijki3 + 7hcijki2 + hcijki: (11)

For the noise rijk, we have

hrnijki =
�
(n� 1)!! �n for n even
0 for n odd

(12)

where we have used the standard notation

n!! =

�
2� 4 � � �� n for n even
1� 3 � � �� n for n odd:

(13)

We also note that the two parts, signal and noise, are statistically independent and so

hnijki = hcijki+ hrijki (14)

and
hcnijk rmijki = 0 (15)

for n 6= 0 and m 6= 0.

In order to model the behavior of a measurement system, we introduce a second form of
average to be denoted by a line above a variable:

hnijki = 1

M

k=MX
k=1

hnijki: (16)
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This is an average across many samples, that is, the atmosphere and OPD are free to move
and will almost certainly have di�erent values during di�erent samples. The integration
time M� is chosen such that the projected baseline does not change signi�cantly and cause
baseline smearing.

When analyzing a particular measurement system to �nd its expected value or some sta-
tistical moment, one must be careful to expand the expression completely in terms of the
ensemble average �rst, using Equations 11, 12, 14, and 15 and then to analyze the time
averaged statistics. This is equivalent to ensuring that you know what is going on in a single
sample before considering many samples. So, for example, consider the expected value of
the counts in one pixel averaged over time:

hnijki = hcijki+ hrijki

=
1

M

k=MX
k=1

N �
�
1 + V (�j) cos

�
2�i

P�
s� +

2�j

P�
s�(k�) +�(k�)

��
+ 0

= N �
"
1 + V (�j)

1

M

k=MX
k=1

cos

�
2�i

P�
s� +

2�j

P�
s�(k�) + �(k�)

�#

= N (17)

as one would expect. The time averaged value of the cosine function goes to zero since, due
to residual atmospheric turbulence, the phase term �(k�) takes on a di�erent and random
value each cycle if phase locking is not used. For the higher order moments, we will also need
to consider time averages of the cosine function. We will again assume that the atmospheric
term takes on a di�erent and random value during each sample period and so

cosn
�
2�i

P�
s� +

2�j

P�
s�(k�) + �(k�)

�
� 1

2�

Z 2�

0
cosn xdx

=

(
(n�1)!!
n!! for n even

0 for n odd:
(18)

The other statistical distributions that will be required for the analysis of fringe tracking
are the Rayleigh and Rician probability density functions. These were �rst used by Walkup
& Goodman (1973) and represent, respectively, the noise probability density function and
the signal plus noise probability density function of the DFT of the fringe signal shown in
Equation 10. The frequency channels of the DFT not corresponding to the fringe spatial
frequency follow the Rayleigh distribution, while the channel that does correspond to the
fringe spatial frequency follows the Rician distribution. These two distributions are related
and can be written

P (Z; s) =
Z

�2Z
exp

"
� 1

2�2Z
(Z2 + j�(s)j2)

#
I0

 
j�(s)jZ
�2Z

!
(19)

where I0(x) is the modi�ed Bessel function of order zero. The second moment of the
distribution is

hZ2i = j�(s)j2+ 2�2Z : (20)
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4. CORRELATION MEASUREMENT

The primary goal of an interferometer is to measure j(�j)j, the visibility magnitude at a
given wavelength at the current projected baseline. In order to do this, we measure the
apparent visibility V (�j) and calibrate for the coherence transfer factor �(�j) by switching
between an unresolved, or well known, object and the object of scienti�c interest. There
are many methods for measuring V , almost all of which result in an estimate for V 2, called
the correlation. Each method, however, has a slightly di�erent form for the SNR. In this
paper, we will consider three methods in detail: the method �rst proposed by Tango &
Twiss (1980), a method based on the DFT, and a modi�ed version of the Tango & Twiss
method.

SNR expressions exist for the case of a noiseless detector along with methods for compen-
sating for photon noise in the measurement. With the addition of noise in the detector, the
signal is further corrupted and the e�ects of detector noise must be subtracted out. Thus
one must know the value of � in order to calibrate the measurements made. In the deriva-
tions that follow, we will consider two cases: one in which the detector noise is well known
in advance of the correlation measurement, which we shall refer to as the \known-noise"
case, and one in which we are estimating � with the same data as that used to estimate
the correlation V (�j), which we shall refer to as the \unknown-noise" case. In general, the
known-noise case produces a better SNR than does the unknown-noise case; however, the
former relies on knowing the noise properties of the detector in advance, something that
will not always be the case. Since a correlation measurement is made independently in each
spectral channel, in many places the j subscripts will be removed for the sake of notational
clarity.

4.1. The Tango & Twiss Method

The method described by Tango & Twiss (1980) involves a single pixel detector on either
side of the beam splitter while inserting a quarter-wave plate into one beam every other
cycle. This is similar to the example con�guration shown in Figure 1 and is equivalent to
setting P� = 4 and s� = 1. The measurement technique used on the Mark III interferometer
(Shao et al. 1988) involves integrating over the fringes in four phase bins, but is essentially
the same.

We form the biased and unnormalized estimate for the kth sample in the jth spectral
channel

qk = (n1k � n3k)
2 + (n2k � n4k)

2 (21)

with the expectation value over many samples of

hqi = 4N2V 2 + 4N + 4�2 (22)

which represents a measurement of the signal power plus the noise power. We can estimate
the photon noise power by summing the counts in all four phase pixels, and we �nd that

hP4
i=1 nii = 4N (23)

which can be subtracted from our biased estimator hqji to remove the e�ects of photon
noise. The detector noise term 4�2, however, still needs to be removed. If we know the
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detector's noise characteristics in advance, this can be done easily. We thus arrive at the
\known-noise" unbiased estimator

hC2i = hqi � hP4
i=1nii � 4�2 = 4N2V 2: (24)

This still needs to be normalized to yield the normalized estimator

hC2
Ni =

hC2i
4N2

= V 2: (25)

To calculate the SNR of this estimate we must �rst calculate its variance. We start by
calculating the variance of the unnormalized estimator using

VAR(hC2i) = VAR(hqi) +VAR(hP4
i=1nii)� 2�COVAR(hqi; hP4

i=1nii): (26)

The variances and covariances in Equation 26 can be calculated in a manner similar to the
example calculation given in Equation 17, and we �nd that

VAR(hqi) = 32N3V 2 + 16N2(1 + V 2) + 4N + 32�2(N2V 2 +N) + 16�4; (27)

VAR(hP4
i=1nii) = 4N + 4�2 (28)

and
COVAR(hqi; hP4

i=1nii) = 8N2V 2 + 4N: (29)

Combining Equations 26, 27, 28, and 29 results in

VAR(hC2i) = 32N3V 2 + 16N2 + �2(32N2V 2 + 32N + 4) + 16�4: (30)

To �nd the variance of the normalized correlation estimator, we divide Equation 30 by
16N4. This step implies that we know the value of N exactly, an assumption that has been
made implicitly in all previously published SNR calculations. While this is not strictly true,
it is a fairly good approximation provided that the number of samples in the measurement
is relatively large. The SNR of a signal is the expected signal value divided by its standard
deviation, and so we have

SNR(V 2) =

p
MN2V 2q

2N3V 2 +N2 + �2(2N2V 2 + 2N + 1
4) + �4

: (31)

This can be compared to previous SNR calculations if one puts � = 0 and is careful about
the de�nitions of N and V . We shall call this the \known-noise Tango & Twiss" estimator
SNR. In order to compare this to other SNR expressions we recall that N� = 4N in this
system resulting in

SNR(V 2) =

p
MN2

�V
2

4
q
N2

� + 1
2N

3
�V

2 + 8�2(14N
2
�V

2 +N� + 1
2) + 16�4

: (32)

If the detector noise properties are not well known or change with environmental conditions,
this measurement method will not work. Instead, we need to estimate the readout noise
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at the same time as estimating the signal correlation. This can be done by simultaneously
calculating

h(P4
i=1ni)

2i = 16N2+ 4N + 4�2 (33)

and forming the unbiased estimator

hC2i = hqi � h(P4
i=1ni)

2i = 4N2(V 2 � 4) (34)

resulting in the normalized estimator

hC2
Ni =

hC2i
4N2

+ 4 = V 2: (35)

This has a SNR given by

SNR(V 2) =

p
MN2V 2

4
q

1
4N

3
�(16� 6V 2) +N2

�(4� V 2) + �2[N2
�(16 + 2V 2) + 24N�] + 64�4

; (36)

and we shall refer to it as the \unknown-noise Tango & Twiss" estimator.

An inspection of Equations 32 and 36 makes it clear that the known-noise estimator will
always have a better SNR than the unknown-noise estimator. However, it is likely that the
unknown-noise estimator will produce more reliable results in the long term because the
noise characteristics of the detector evolve with time and environmental conditions.

It will be useful to know how these expressions behave in the limits of very large and very
small photon counts, although it is the low light levels that will be of most interest. The
high light level limit is independent of the detector noise and is

SNR(V 2) � 1

2

s
MN�

2
V: (37)

For low light levels, there are di�erent approximations for the noiseless and noisy cases. For
a noiseless detector

SNRnoiseless(V
2) �

p
MV 2N�

4
(38)

while for a noisy detector

SNRnoisy(V
2) �

p
MN2

�V
2

X�2
(39)

where X = 16 for the known-noise case and X = 32 for the unknown-noise case.

4.2. Discrete Fourier Transform

If the phase dimension of the detector has at least 4 pixels, one can use the DFT set out in
Equation 10 to estimate the visibility. In most practical systems, the fast Fourier Transform
(FFT) is used but this does not a�ect the results. In the case of the bin that corresponds
to the spatial frequency of the fringes, s = s� and the total power is the signal power given
in Equation 10 plus the noise power. The noise power is the sum of the variances of the two
sources of noise, photon statistics and detector noise. The variance of the photon events
is N� while the variance of the detector noise will be N��

2. Frequency bins that do not
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correspond to the fringe spatial frequency will contain only noise power. This means that
the power spectrum will have the form

hj��(s)j2i =
8<
:

N2
� +N� +N��

2 for s = 0
N2

�V
2=4 +N� +N��

2 for s = s�
N� +N��

2 otherwise.
(40)

Once the noise power is subtracted, the signal in the s = s� bin is a correlation measurement.
We measure and remove the noise power in the same way as described above for the known-
noise Tango & Twiss estimator.

The SNR of this measurement of fringe visibility for the \known-noise" case is given by
Beletic (1994) as

SNR(V 2) =

p
MN2

�jT (�j)j2j(�j)j2q
N2

� + 2N3
�jT (�j)j2j(�j)j2 + 2P��2(N2

�jT (�j)j2j(�j)j2P��4 +N�) + P 2
��

4

(41)
where T (�j) is the normalized optical system transfer function.

In order to measure V 2 with the DFT, we need to set jT (�j)j = �=2, which yields

SNR(j�j2) =
p
M j�j2q

N2
� + 2N�j�j2 + 2P��2(j�j2+N�) + P 2

��
4
: (42)

We can put this into a similar form to the Tango & Twiss estimators by recalling that
j�j2 = N2

�V
2=2, resulting in an SNR for the visibility measurement of

SNR(V 2) =

p
MN2

�V
2

4
q
N2

� + 1
2N

3
�V

2 + 2P��2(
1
4N

2
�V

2 +N�) + P 2
��

4
: (43)

Putting P� = 4 makes this the same as the Tango & Twiss known-noise estimator SNR
given in Equation 32, except for the extra factor of 1

2 in the denominator of the Tango &
Twiss formula. Thus we can say that the Tango & Twiss estimator is an example of the
DFT across 4 pixels.

In the high photon count limit, as with the Tango & Twiss method, this expression can

be approximated by 1
2

q
MN
2 V for both a noiseless and a noisy detector. For a noiseless

detector at low light levels

SNRnoiseless(V
2) �

p
MV 2N�

4
(44)

while for a noisy detector

SNRnoisy(V
2) �

p
MN2

�V
2

4P��2
: (45)

4.3. Modi�ed Tango & Twiss Method

Based on the expressions for SNR above, it is clear that the SNR for a noisy detector
deteriorates very quickly with an increase in the number of pixels. Thus to achieve the
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best SNR, we should use as few pixels as possible. The Tango & Twiss method outlined in
Section 4.1 produces a correlation estimate for every sample and uses four pixels. It can also
be used to supply an estimate for the fringe phase every cycle. If we forgo these features, it
is possible to produce a correlation estimator that uses only two pixels and thereby achieve
a better SNR, which we shall call the \modi�ed Tango & Twiss method". For this method
to work, we must assume that the atmosphere changes the fringe phase randomly and the
cosine terms average out according to Equation 18. This was the method used in the Sydney
University Stellar Interferometer (SUSI) prototype and, at the time of writing, the SUSI
(Davis et al. 1994) instrument itself. In this measurement scheme, P� = 2 and, as before,
s� = 1, which is equivalent to a single pixel per spectral channel on either side of a beam
splitter. The biased and unnormalized estimator then becomes

qk = (n1k � n2k)
2 (46)

which has the expectation over many samples of

hqi = 2N2V 2 + 2N + 2�2: (47)

Once again we must subtract out the noise power terms 2N and 2�2. The known-noise
and unknown-noise cases are similar to the Tango & Twiss method described above. In the
known-noise case we use

hC2i = hqi � hP4
i=1nii � 2�2 = 2N2V 2 (48)

resulting in the normalized correlation estimator

hC2
Ni =

hC2i
2N2

= V 2: (49)

Recalling that in this case N� = 2N , this has a SNR of

SNR(V 2) =

p
MN2

�V
2

4
q

1
32N

4
�V

4 + 1
2N

3
�V

2 + 1
2N

2
� + �2(N2

�V
2 + 2N� + 1

2) + 2�4
: (50)

If the detector noise properties are not well known in advance, or vary in time or across
pixels, we need to use the unknown-noise estimator

hC2i = hqi � h(P4
i=1ni)

2i = 2N2(V 2 � 2) (51)

resulting in the normalized estimator

hC2
Ni =

hC2i
2N2

+ 2 = V 2 (52)

which has a SNR of

SNR(V 2) =

p
MN2

�V
2

4
q

1
32N

4
�V

4 + (N3
� +N2

�)(1� 1
2V

2) + 2�2[N2
�(1 +

1
2V

2) + 2N�] + 4�4
: (53)
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In contrast to the other correlation estimators, the SNR in a single sample does not always
increase with increasing photon events. In fact, for both Equation 50 and Equation 53 we
�nd that

lim
N!1

SNR(V 2) =
p
2M: (54)

For the low photon count levels we have for a noiseless detector

SNRnoiseless(V
2) � 1

2

s
M

2
N�V

2; (55)

while for a noisy detector

SNRnoisy(V
2) �

p
MN2

�V
2

X�2
(56)

where X = 4
p
2 in the known-noise case and X = 16 for the unknown-noise case.

4.4. Comparison

It remains to compare these di�erent correlation estimates. It is clear from the above
analysis that the SNR is a strong function of pixel number for a noisy detector. Thus, when
measuring signal correlation it is most advantageous to pick the measurement scheme that
uses the least number of pixels. The DFT method uses the greatest number of pixels, and
furthermore requires that the spatial frequency of the fringes across the phase dimension of
the detector falls exactly into one of the frequency bins in the power spectrum. If this is
not the case, spectral leakage will spread the signal energy amongst several pixels, reducing
the SNR. This is di�cult to do, especially if many spectral channels are desired. Most
methods of introducing the phase changes across a detector, like adding a constant tilt or
combination in the image plane, are wavelength dependent. The Tango & Twiss method is
basically equivalent to a DFT with four pixels. Because this can be done by using a simple
beam splitter, thereby ensuring the correct phase relationships, the Tango & Twiss method
does not su�er from these problems. We will therefore not consider the DFT method in the
following analysis.

Figure 2 contains a number of plots of the predicted SNR in a single sample as a function of
detected photon events for various visibilities and detector noise values. The value of � = 6
has been chosen as a value for production CCD detector arrays. We will also use a value of
� = 3 in some calculations, which represents a `current best' value for CCDs. As one would
expect, a noiseless detector system achieves the best SNR for any given photon count. These
plots also show that the modi�ed Tango & Twiss measurement scheme performs the best at
low count rates, while it goes to

p
2M for high count rates as per Equation 54. This holds

true for both the known-noise and unknown-noise cases. For correlation measurements then,
the modi�ed Tango & Twiss estimator is preferable whether one is using a noisy detector
or not.

In order to compare the noisy case with the noiseless case we must also take into account
the DQE of the di�erent types of detector. Figure 3 contains plots of predicted SNR and
predicted integration times for the noiseless and the known-noise modi�ed Tango & Twiss
estimator, where in the case of the noiseless detector the DQE has been set to 10% and
for the noisy detector the DQE has been set to 80%. The 10% �gure is higher than any
currently available photon noise limited array detector, while the 80% �gure is slightly lower
than the best DQE's reported for a CCD. The topmost plot in Figure 3 shows the predicted
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FIGURE 2. Plots of SNR for the Tango & Twiss and Modi�ed Tango & Twiss measurement
methods for a range of visibilities and a noise value of 6.
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FIGURE 3. Comparison of a noiseless and noisy detector using the known-noise modi�ed Tango
& Twiss method. The top plot shows the expected SNR while the bottom plot shows the number
of samples required for a total SNR of 50. The noiseless detector is assumed to have a DQE of 10%
while the noisy detector has a DQE of 80%.
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SNR for visibilities of 1 and 0.25. At the lowest count rates, the noiseless detector has the
best performance. This will always be true even if the noisy detector were 100% e�cient.
However, the noisy detector has a better SNR for a substantial range of count rates. The
crossover point occurs at N� � 3 when � = 3 and at N� � 10 when � = 6 for both
visibilities.

Another way of comparing the detectors is shown in the lower plot of Figure 3. This
plot contains the same data except the vertical axis now represents the number of samples
required in an integration to achieve a SNR of 50. An horizontal line has also been added
representing an half-hour integration for a sample time of 10ms. In the case of a visibility
of 1, it is only at this point that the noiseless detector starts to be a better choice than
the noisy detector, for both the � = 3 and the � = 6 cases. For lower visibilities, this does
not occur until integrations several orders of magnitude longer are used, by which time the
projected baseline will have changed signi�cantly. The measured visibility will always be
less than one. Thus in terms of required integration times for a given SNR, a noisy detector
may be quite adequate for correlation measurement. For example, for an aperture size of
20 cm, the sample time of 10ms quoted above, an optical system throughput of 5% and an
optical bandwidth of 3nm a noisy detector will have magnitude limit of 8 in the case of
V = 1 after an half-hour integration, the same as that of the noiseless detector. For the
V = 0:25 case, the magnitude limits are 6 for � = 3, 5:5 for � = 6 and 4:7 for the noiseless
detector. While using a high-DQE single-pixel photon noise limited detector, such as an
APD, would achieve better magnitude limits, if one already has an array detector available
(like a CCD), the latter could be used for correlation measurement.

5. GROUP DELAY TRACKING

The fringe envelope must be located and tracked before any correlation measurements can
be made, and, unless some form of passive interferometry is used, the fringe tracking system
will de�ne the magnitude limit of the instrument. Fringe tracking can take two forms: phase
locking, where the tracking servo loop is closed to within a fraction of the fringe phase, or
group delay tracking (GDT), which is less precise and tracks to within a fraction of the
fringe envelope. In this analysis we shall use GDT for several reasons. First, phase locking
requires at least four pixels in the phase dimension of the detector, either by using a temporal
encoding scheme like that used in the Mark III or with wave-plates as in the Tango & Twiss
method. This means phase tracking is wavelength dependent, requires many pixels, and,
given the same DQE, will have a brighter magnitude limit than GDT. In contrast, GDT
requires only a single phase pixel in each spectral channel. Secondly, when phase locking
fails, it does so catastrophically, while GDT can be used for passive tracking and post-
processing even if it has failed for actively tracking the fringe envelope. Finally, in order
for some of the correlation measurement schemes to work, we have assumed that a residual
phase error occurs due to the atmosphere. This will not be true for phase locking.

Group delay tracking relies on the fact that the spatial frequency of the fringes in the
spectral dimension of the detector is linearly related to the OPD. In order to �nd this
spatial frequency we calculate a DFT across the spectrum, which gives us

hj��(s)j2i =
8<
:

N2
� +N� +N��

2 for s = 0
N2
�V

2=4 +N� +N��
2 for s = s�

N� +N��
2 otherwise

(57)

and search for a peak. The frequency bin containing this peak should be that corresponding
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to s = s� , and Equation 4 can then be used to �nd the OPD. This will fail to give the correct
result if the noise causes the highest peak to be in a frequency bin other than s = s� . Thus
the SNR of the DFT estimator is not as important in fringe tracking as the probability
that some noise peak will be higher than the signal peak. In this analysis we shall follow
the work by Lawson (1994), in which a complete description of the GDT method using a
photon noise limited detector can be found.

In a single sample, the amplitude of the signal plus noise and the noise by itself follow the
Rician and Rayleigh distribution given in Equation 19, where we use Equation 10 to de�ne
j�(s)j and, due to the similarities of Equation 57 to Equation 20, we set

2�2Z = N� +N��
2: (58)

In the case of a power spectrum averaged over many samples we must use joint-probability
distributions. For M samples these joint-probability distributions are found by convolving
the Rician and Rayleigh distributions with themselves M times. The probability that at
least one noise peak amongst b channels is higher than the signal peak is given by

pe = 1�
Z 1
0

P (Z; s = s�)

"Z Z

0
P (z; s 6= s�)dz

#b
dZ: (59)

An important consideration when performing this calculation is the choice of a value for
b. If the fringe location is totally unknown, the value of b must be set to the number of
frequency bins in the DFT. If it is known that the fringes could not have moved more than
a small distance since the last measurement, the value of b can be reduced. Furthermore, if
b is large, the internal integral in Equation 59 raised to this power is likely to be a number
either too small or too large to be accurately represented in computer memory. These
matters as well as methods for calculating these probabilities numerically are outlined in
the paper by Lawson (1994).

Several examples of tracking loss probability curves are shown in Figure 4 for channeled
spectra with N� = 256 and a measured visibility of 0:5. The search for a peak is across
all pixels in the DFT excluding the zero frequency or DC channel, and so b = 127. The
calculations have been performed for three levels of noise: � = 0, � = 3 and � = 6; and
for integrations across 1, 10, 100 and 1000 samples. In each case, the DQE of the detector
has been set to 100%. The addition of detector noise has two e�ects. The �rst, and
most detrimental, is to increase the number of detected photon events required to maintain
tracking. The second e�ect is an increased slope in the probability of tracking loss with
reduced photon counts. This second e�ect is similar to changing the b parameter.

As with the comparison of correlation measurements in Section 4.4, a more practical way
to judge the e�ect of detector noise is to take into account the di�erence in DQE of the
two types of detector. Several sets of probability curves have been plotted in Figure 5
for a range of integration times and visibility values of 0:25, 0:5 and 1:0. Once again the
DQE of the noiseless detector has been set to 10% and that of the noisy detector to 80%
with a noise level of � = 3. These represent best cases for an intensi�ed CCD or photon
counting array like a PAPA camera (Papaliolios & Mertz 1981) and a modern bare CCD.
For the highest visibility levels and longest integration times, the noiseless detector still
has the best performance. However, unresolved objects will never be the major target of
a stellar interferometer. At the lower visibilities and shorter integration times the noisy
detector starts to out-perform the noiseless detector, with the only disadvantage being the
increased slope of the curve implying that failure will be more catastrophic. If we take
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FIGURE 4. The probability of tracking failure for a visibility of 0.5 measured across 256 pixels
and setting b = 127 (all DFT pixels except the DC channel) with no noise (solid lines), a noise of
� = 3 (dashed lines) and noise of � = 6 (dotted lines). Four integration times are shown for each
noise level which are from right to left: M = 1, M = 10, M = 100 and M = 1000.

into account the other features of a CCD | relatively low cost, exibility due to noiseless
on-chip rebinning, and large optical bandwidth | it becomes an attractive device for use
in group delay tracking. Furthermore, if the number of pixels N� is reduced, the e�ect of
detector noise is reduced, making a high-DQE, noisy detector even more promising.

As an illustration of the potential of a noisy detector, consider tracking an object whose
measured visibility at the current baseline and atmospheric conditions is 0.5. Using the same
sample time of 10ms, aperture size of 20 cm, and optical throughput of 5% used in Section
4.4, together with the optical con�guration shown in Figure 1, it is possible to estimate
the magnitude limit of fringe tracking. Since there is a spectrum available on both sides of
the beam splitter, two channeled fringes are available, and the probability of tracking loss
may be squared, reecting the likelihood that both channels lose the fringe signal. Table 1
contains the magnitudes at which the probability of tracking loss is 1%, once again using
the 10% and 80% DQE �gures for the noiseless and noisy detectors and setting N� = 64 and
b = 31. The noisy detector has a higher magnitude limit in all cases. As the integration M
is increased the e�ects of detector noise increases, reecting the fact that many `readouts' of
the detector are required. At high values of M , the noiseless detector starts to out-perform
the noisy detector. However, for active fringe tracking, a detector capable of tracking in
the shortest possible integration time is desired. Clearly a noisy detector such as a CCD
is suitable for group delay tracking and, if a large aperture were broken up into multiple
subapertures, even fainter objects could be targeted.
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FIGURE 5. Probability of tracking loss for a range of visibilities. The solid lines represent a
10% noiseless detector while the dashed lines represent an 80% detector with � = 3. From right to
left, the plots are for M = 1, M = 10, M = 100 and M = 1000. The short vertical lines along the
horizontal axis are the approximated tracking failure points.
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TABLE 1. Fringe tracking magnitude limits for noiseless and noisy detectors.

DQE = 10% DQE = 80%
M � = 0 � = 3 � = 6
1 6.6 7.8 7.2
10 8.4 8.9 8.2

5.1. Gaussian approximation

The numerical calculation of the integrals in Equation 59 are time consuming. Because one
is typically more interested in the point at which the probability is signi�cantly greater than
zero, and not the exact probability for all light levels, it is useful to have an approximate
form for the point of tracking failure. In the limit of large values ofM , both the Rician and
Rayleigh distributions are well approximated by a Gaussian with the mean value of j�(s)j2
and a variance given by the variance of the j�(s)j2j estimator. In the case of group delay
tracking, the estimator is the DFT. Thus we can use a Gaussian probability over Z(s) and
set the mean to

Z(s) = j�(s)j2 (60)

where for the pixel containing the fringe signal j�(s = s�)j = NV=2 and for all other pixels
j�(s 6= s�)j = 0. Following Equation 42, we set the variance of both the signal plus noise
pixel and the noise only pixels to

�2Z(s) =
1

M
[N2

� + 2N�j�j2+ 2P��
2(j�j2+N�) + P 2

��
4]: (61)

The integral in Equation 59 is a calculation of the overlap of the two probability distri-
butions. A large overlap corresponds to a high probability of tracking loss, while a small
overlap implies a low probability of tracking loss. Thus, using the Gaussian approximation
above, we can say that tracking failure will occur when the di�erence in means is less than
the sum of the 3�Z(s) points for the two distributions. This will be when

Z(s = s�)�Z(s 6= s�) = �
h
�Z(s=s� ) + �Z(s6=s� )

i
(62)

where in most cases we shall set � = 3. If we combine Equations 60, 61, and 62 we �nd
that the visibility at which tracking will fail is

V 2 =
8�

MN2
�

�
N� + P��

2 +
1

�

q
M(N2

� + P 2
� �

4 + 2p��2N�)

�
: (63)

This equation can also be solved numerically for N� . This has been done for the various
parameters sets shown in Figure 5, where small vertical lines have been plotted at the
photon count rate predicted by Equation 63. This plot demonstrates that the Gaussian
approximation works well, even for low values of M .

6. SAMPLE TIME AND APERTURE SIZE OPTIMIZATION

With the approximations for correlation measurement SNR set out in Section 4 and the
Gaussian approximation given in the previous section for tracking failure, it is possible to
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investigate optimum sample times and aperture sizes for the two measurements. In order
to do this we require expressions for the temporal and spatial correlation transfer factors of
the atmosphere. The temporal coherence transfer factor is given by (Buscher 1988)

�2t =
2

�

Z �

0

�
1� t

�

�
exp

�
�( t

�0
)5=3

�
dt; (64)

and the spatial coherence transfer factor is given by (Tango & Twiss 1980)

�2s =

R
T (�)B2(�) d�R

T (�) d�
: (65)

Once again T (�) is the optical transfer function of the optical system, and the optical
transfer function of the phase aberrations caused by the atmosphere is B(�). Expressions
for T (�) and B(�) can be found in the work by Fried (1966). This method for calculating
the spatial coherence loss factor has been criticized by Buscher, who uses the results of a
computer simulation instead. However, other simulations (ten Brummelaar et al. 1995)
con�rm Equation 65, and so we will use this expression in the calculations below. In either
case, the general form of the coherence loss factor is the same, and the results will be very
similar.

6.1. Correlation measurement

For correlation measurement we have, for all measurement schemes,

SNR(V 2) /
( p

M N� V
2 for � = 0p

M N2
� V

2 for � 6= 0:
(66)

Changing the sample time will a�ect all of the parameters in Equation 66. The visibility
V will be proportional to the temporal coherence transfer factor given in Equation 64, the
average number of photons arriving per sample time will be proportional to the sample time,
while the number of samples M in a given integration time will be inversely proportional
to the sample time. This results in

SNR(V 2) /
(

�1=2 �2t for � = 0
�3=2 �2t for � 6= 0:

(67)

Changing the aperture size R will have a similar e�ect, except the number of integrations
will not change and the average number of photons will be proportional to the aperture
radius squared, and so

SNR(V 2) /
�

R2 �2s for � = 0
R4 �2s for � 6= 0:

(68)

The top plot in Figure (6) shows the SNR in arbitrary units for the these four cases.

From the point of view of SNR a noiseless detector has an optimum sample time of 1:6�0
and an optimum aperture size of 2:5r0. Taking into account the di�erent de�nitions of �s,
this is exactly the same as the results of Buscher. Once detector noise has been added,
however, no local maximum occurs in the SNR curves and both the optimum aperture size
and sample time go to in�nity. This is similar to the non tilt corrected case discussed by
Buscher. Obviously it is neither possible nor desirable to have extremely large sample times
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FIGURE 6. Above: The SNR of correlation measurement at low photon rates as a function
of aperture size and sample time for a noiseless and a noisy detector. Below: The photon counts
required in a single sample over each r0 cell in a time period of �0 using a 32 pixel detector in order
to track the fringe envelope as a function of aperture size and sample time for various noise levels.
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or apertures which will produce very low measured visibilities, albeit with high SNR. As
will be shown below, this is not the case for group delay tracking, and when using the
same detection system to do both fringe tracking and correlation measurement it would
be best to choose the aperture size that optimizes fringe tracking performance. Figure 6
also shows that the curves for the noisy detector change slope at approximately the same
point at which the noiseless detector SNR is optimized. This indicates that while the SNR
will increase beyond this point, the relative increase in SNR is reduced. Thus using the
optimum sample time for a noiseless detector may be the best choice even if you are using
a noisy detector.

6.2. Fringe tracking

Unfortunately, no simple approximations are available for group delay tracking, so no gen-
eral case can be investigated. The lower plot in Figure 6 shows the count rates required per
r0 cell in a time period of �0 for group delay tracking using Equation 63 over 32 pixels with
noise levels of � = 0, � = 3 and � = 6 and no integration (M = 1). Once again, Equations
64 and 65 have been used for the visibility, and the counts have been scaled by R2 for the
spatial case and � for the temporal case.

For a noiseless detector, the optimum aperture size is once again 2:5r0, the same as that
for correlation measurement. As noise is added to the detector, this optimum aperture size
increases to 3r0 for � = 3 and 7r0 for � = 6. With higher noise levels, no local minimum
exists. This plot also shows that it is only at the smaller apertures that the noise a�ects
tracking performance, reecting the fact that for large aperture sizes the photon count
overwhelms the detector noise. Thus the optimum aperture size for a noisy detector should
be chosen based on fringe tracking rather than correlation measurement.

There is no clear optimum sample time for either the noiseless or noisy detector cases,
although the longer the sample time the better the probability of fringe tracking. If too
large a sample time is chosen, the fringe envelope can move signi�cantly, smearing out the
peak in the channeled spectrum and making fringe tracking impossible. The sample time
should not be longer than 2-3 times �0. If longer times are needed for faint objects, longer
integrations should be used. The paper by Lawson (1994) contains a discussion of these
problems.

7. CONCLUSION

High DQE noiseless detectors such as an APD will always have the best performance for
both fringe tracking and correlation measurement. Unfortunately, these devices are not
available in arrays and they have a high per-pixel cost. This work has shown that when
choosing a detector that will allow fringe tracking on the faintest possible object with the
lowest possible visibility and shortest possible sample time, a noisy high-DQE detector like a
bare CCD becomes an attractive alternative, especially if the exibility of on-chip rebinning
is taken into account. It has also been shown that these devices can be used for correlation
measurement although they only match the performance of a lower DQE noiseless array
detector rather than improve on it. In the case of group delay tracking an optimum aperture
size exists for a noisy detector and a method for calculating this has been given. In the
case of sample times and correlation measurement no clear optimums were found and the
optimums for a noiseless detector (2:5r0 for aperture size and 1:6�0 for sample time) should
be used.
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CCDs with a readout noise �gure of � = 6 are now available, and it is to be hoped that noise
levels of � = 3 will be achieved on a production basis soon. Based on these calculations, a
small low-noise CCD has a high enough DQE to make up for its readout noise, making it
a good detector for group delay tracking. Once in place it will also be possible to use this
array detector for parallel correlation measurements in multiple spectral bands.
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