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1. INTRODUCTION

Due to the complex nature of the turbulent atmosphere and the optical systems themselves,
analytical solutions to many of the problems associated with a large baseline optical stellar
interferometer do not always exist. Thus, to answer some questions regarding the behavior
of such a system computer simulations are required.

The most common method of modeling an atmospherically aberrated wavefront is to gen-
erate large phase screens containing the correct statistical distribution and move them past
the aperture at a given velocity, nominally the current wind speed. These phase screens
contain many pixels and must be re-generated for each simulation. For example, for a
one second run for two 1m apertures 100m apart and a wind speed of 10ms�1 one would
require a phase screen containing 107 pixels to sample 1cm patches every 10ms for one
second. There will then be 100� 100 pixels within each aperture which must be individu-
ally tracked through the instrument. Calculating average phase gradient or the e�ect of a
non-ideal optical surface will require operations on all 10000 pixels for each sample.

The polynomials of Zernike (Wang & Silva 1980, Born & Wolf 1989) are a set of normalized
orthogonal functions de�ned on a circle and can be used to represent the wavefront within a
circular aperture. Using Zernike coe�cients to represent the wavefront greatly reduces the
number of parameters that need to be tracked through an optical system. Many authors
have used these functions to investigate and model an atmospherically perturbed wavefront
(Fried 1965, Noll 1976, Hogge & Butts 1976, Hu et al. 1989, Roddier 1990); however, these
methods are restricted to an analysis of the covariance matrix of the Zernike coe�cients.
Random series of coe�cients generated in this way have the correct statistics but do not
have a realistic time evolution.

Wavefronts can also be generated by using the temporal power spectra of the Zernike co-
e�cients In this way a suite of random coe�cients is created that not only re
ects the
correct statistical variances but also has a smooth evolution in time. Furthermore, if the
polynomials are used to represent physical path-length, rather than phase, the model be-
comes wavelength independent. With the coe�cients scaled in this way many of the optical
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systems within the instrument become easy to represent, reducing the computation time
for each optic from a calculation for every pixel to one for each Zernike mode. As shall be
shown, complex wavefronts can be well represented by as few as 105 Zernike modes, without
the need to choose pixel size, numbers or wavelength in advance.

I shall use the nomenclature set out by Noll (1976), which is summarized in appendix A.

2. ATMOSPHERIC TURBULENCE MODEL

The derivation of the temporal power spectra of Zernike coe�cients uses the Tayler hy-
pothesis and the spatial power spectrum of phase 
uctuations at ground level (Roddier et
al. 1993, ten Brummelaar 1995). The spectrum most often used was de�ned in Equation
21 of the paper by Noll (1976) where the power is proportional to the spatial frequency k

to the power of �11=3. This ignores the e�ects of the outer scale length of turbulence and
so the power goes to in�nity for large spatial scales. While this does not seriously a�ect
single aperture models recent measurements (Davis et al. 1995) have shown that this is not
a realistic assumption for large arrays. The outer scale of turbulence L0 can be taken into
account by using an exponential model and we will write the phase spatial power spectrum
at ground level

W�(k) = 0:023
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where R is the aperture radius and r0 is Fried's parameter.

Following the techniques set out by Roddier et al. (1993) and using Equation 1 for the phase
spatial power spectrum, the Zernike coe�cient temporal power spectrum can be calculated
resulting in

�aj(f; r0; R; v?) =
0:023

�2
(n+ 1)

�
R

r0

�5=3 R

v?

�
Z 1

�1
dky (k

2
x + k2y)

�17=6
���Jn+1(2�qk2x + k2y)

���2

�
�
1� e�(k

2
x+k

2
y)
�
L0
2�R

�2�

�
8<
:

2 cos2m� m 6= 0; even j
2 sin2m� m 6= 0; odd j
1 m = 0

(2)

where f is the frequency in Hertz, v? is the perpendicular wind speed, assumed to to blow
in the direction of the X axis, and kx and ky are the Cartesian components of k such that
kx = Rf=v? and tan� = ky=kx. In this equation n, m and j are the Zernike polynomial
indices.

An approximate form of the Zernike coe�cient temporal power spectrum is (ten Brumme-
laar 1995)
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where f0 = v?=(2�R). Both Equations 2 and 3 produce spectra with equal amounts of
power and similar high frequency roll-o�s. The approximation is much easier to calculate
but does not correctly model the low frequency behavior. Apart from calculation time, little
practical di�erence has been found between the two formulations.

Both methods result in power spectra with the units of rad2 and are of the form

�aj(f; r0; R; v?) =

�
1

r0

�5=3
�0
aj(f; R; v?): (4)

Wavelength dependence is part of the r0 parameter

r0(�) =

�
�

�0

�6=5
r�0 (5)

where �0 is a reference wavelength (usually 500nm) and r�0 is the Fried parameter at the
reference wavelength. Combining Equations 4 and 5 results in
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Note that the power spectra scale with the inverse wavelength squared.

For a given aperture radius and wind speed the functions �0
aj(f; R; v?) need only be cal-

culated once for a range of discrete frequencies (f1; f2; � � � ; fN) up to a chosen maximum
polynomial order jmax. These frequencies need not be evenly spaced nor does N need to be
a power of two. Care should be taken when choosing the number and range of frequencies
to ensure that the low frequencies have been su�ciently sampled to correctly model the
long term and large scale 
uctuations and that enough high frequencies are used to include
most of the power in the spectra. The high frequency roll-o� begins at a harmonic of the
frequency f0 de�ned above and is given by (ten Brummelaar 1995)

fknee = (n+ 1)f0: (7)

Beyond this the power scales as f�17=6.

A set of random coe�cients with the power spectra de�ned by Equation 6 can now be
created by generating a set of N random phases �ij between 0 and 2� for each of the jmax

coe�cients and performing an inverse cosine transform. The jth coe�cient at time t will
then be given by
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This series will repeat after 1
f1

seconds. It is not strictly necessary to make the time steps

even, although for practical purposes we will assume that a calculation is performed for
time steps of the size � which must be less than the coherence time of the atmosphere
�0 � r0=v?.
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Using Equation 4 or 6 with Equation 8 yields a set of Zernike coe�cients with the units
of phase across a normalized aperture. If we now change the de�nition of the Zernike
polynomial expansion from phase to physical path-length by multiplying Equation 8 by �

2�
this representation becomes wavelength independent. Furthermore, if the coe�cients are
calculated for r�0 = 1 they can be rescaled at anytime for di�erent seeing conditions. It is
then possible to generate as many wavefront sets as desired by using a new set of random
phases �ij .

Once a series of atmospherically perturbed wavefronts has been generated it is then nec-
essary to consider the a�ect of the optical system itself on the Zernike coe�cients. For
example, a tip/tilt mirror can be implemented by changing the a2 and a3 coe�cients and a
path-length equalizer need only adjust the a1 coe�cient. In order to model an interferom-
eter, or telescope, the following parameters need to be tracked through the system:

1. The current aperture radius.

2. The total physical path-length a1. It is often necessary to have several such parame-
ters; aj;vacuum for vacuum path, aj;air for air path and aj;glass for physical path within
each glass type. The refractive indices can be taken into account when a wavelength
is chosen and after the simulation has been completed.

3. Each optic component's a�ect on the wavefront shape in terms of the Zernike coe�-
cients a2 and higher.

This model does not take into account di�raction e�ects, but as shall be shown below, most
other optical aberrations can be easily modeled.

This will work well for single apertures, however, when modeling an array with large base-
lines one more step is required. A set of power spectra and coe�cients for a single large
aperture that covers the entire area of the array is used to calculate the atmospherically
introduced path-lengths at the positions of the individual apertures. These are then added
to the a1 coe�cients for each aperture. Only a small number of Zernike coe�cients is re-
quired for the large aperture as it is only necessary to model the low frequency and large
scale 
uctuations. It is for these calculations that it is important to include the outer-scale
length parameter L0 since it is coupled strongly to these large scale e�ects.

3. OPTICAL SURFACE ABERRATIONS

Each optical surface within the instrument will introduce errors into the wavefront. Since
the Zernike coe�cients now represent physical path-length it is only necessary to have a
Zernike model of each surface and add them to those of the wavefront. The coe�cients
representing an optical surface can be generated by following a methodology similar to that
set out by Noll (1976) for atmospheric turbulence.

Consider an ensemble of surfaces, each with di�erent, and random, optical aberrations.
We will assume that these aberrations, on average, have the spatial power spectra Ws(k)
which depends only on the spatial frequency magnitude k. The covariance of the Zernike
coe�cients will then be

ha�jaj0i =
Z
d�d�0W (�)W (�0)Zj(�)Cs(R�;R�

0)Zj0(�
0) (9)

TR 29 � 4



ARRAY SIMULATIONS USING ZERNIKE POLYNOMIALS

FIGURE 1. Telescope primary mirror deformation as calculated (left) and �tted by 105 Zernike
terms (right) for a 1 meter aperture mirror on an Alt/Az mount.

where Cs(R�;R�
0) is the covariance function of the optical surface aberrations whose Fourier

transform is

�s(k=R; k
0=R) =

1
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Equation 9 can be written as an integral in Fourier space
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and then calculated to yield
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for j � j0 even and zero for j � j0 odd.

With Equation 12 it is possible to generate sets of coe�cients that display the correct
statistics using the technique set out by Roddier (1990). In most cases, however, the cross
terms will be small and it is su�cient to use Gaussian random variables with a variance of

�2aj =
2(n+ 1)

�R2

Z 1

0
Ws(k=R)

J2n+1(2�k)

k
dk: (13)

An example function for use as the spatial power spectrum is based on the gamma statistical
distribution

Ws(k) =
�2rms

�(k0)
kk0�1 e�k : (14)

This distribution has no energy at the zero spatial frequency point, a maximum at the
frequency k0, a slow roll-o� at frequencies higher than k0 and a total power, or variance,
of �2rms. The total power can be set to that of the surface quality, usually expressed in
terms of a number of waves at a reference wavelength but easily converted to physical path.
The peak spatial frequency must then be chosen, with high peak frequency implying a wide
distribution across the spatial frequency scale.
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With large mirrors, such as those used in telescopes or beam reducers, other deformations
can be introduced due to mirror sag which are not random and can therefore not be modeled
in the same way as the surface quality. Mirror deformations like these, however, can be
accurately predicted using �nite element analysis and then cast in terms of the Zernike
coe�cients. Figure 1 contains an example of such a �t for a one meter telescope mirror.

4. TIP/TILT SERVO MODEL

The action of a tip/tilt mirror can be implemented by taking into account the current
aperture size and changing the a2 and a3 coe�cients. When modeling a mirror in this way
it is important to remember that Z2(1; 0) = Z3(1;

�
2 ) = 2 and so only half of the required

tilt should be added to the coe�cients. The dynamic behavior of the mirror can be modeled
by using standard servo analysis techniques (ten Brummelaar & Tango 1994)

The tip/tilt detector could also be modeled in this way although the a2 and a3 parameters
do not directly correspond to the wavefront tilt. All the Zernike terms for which m = 1
contribute to wavefront tilt and the average phase gradient in physical path per normalized
aperture radius in the direction � is given by (ten Brummelaar 1995)

�tilt(�) =
X
m=1

aj(t)Zj(1; �) path/radius: (15)

This can be used to represent the signal of a quadrant detector.

The expression for the error associated with a quadrant detector at the measurement wave-
length � is (Tyler & Fried 1982)
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Here o is the angular subtense of the object divided by the di�raction angle (�=2R) of the
optical system and SNR is the signal to noise ratio of the four detectors summed to act as
a single detector. Few target objects will be resolved by a single aperture and so we can
say that o � 1. Furthermore, the signal to noise ratio of the four detectors summed will
be primarily determined by the Poisson statistics of the photon events so we can write the
error in angular position measurement of the quadrant detectors as

��tilt
=

3�

32

�

R

1p
Nph

rad (17)

where Nph is the total number of counts received in all four quadrants. This expression
needs to be re-cast into physical path per normalized aperture radius to become

��tilt
=

3�

32

�p
Nph

path/radius: (18)

Both Equations 15 and 18 are independent of aperture radius, however, the aperture radius
will have to be taken into account when modeling the dynamics of the moving mirror itself.

Due to the greater number of parameters involved, a generalized model is less tractable for
an optical path-length equalizer (OPLE). Like the tip/tilt system, however, it is possible to
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model an OPLE by varying just a few Zernike coe�cients. Moving the OPLE is the same
as changing either the a1;vacuum or a1;air coe�cients depending on whether the OPLE cart
is within a vacuum chamber or not. The dynamical behavior is strongly coupled to the
mechanical design but a simple lag �lter with an e�1 response of less than a millisecond
is a good approximation (Shao 1994). Other optical e�ects such as wavefront tilt due to
misalignment of the cart or defocus caused by movement of the secondary in a cat's eye can
be modeled by adjusting the a2, a3, and a4 coe�cients. Fringe tracking detectors need to
modeled once a wave-band has been chosen and fringes calculated as set out in the following
section.

5. STREHL RATIOS AND FRINGES

Once two or more beams have been tracked through the atmosphere and the optical system
a wave-length, optical bandwidth and pixilation size must be chosen. The values of the
Zernike modes used at each pixel location can be calculated once, using Equation 50 and
stored for later use. With this done, visibilities and Strehls can be worked out for various
seeing conditions and wavelengths without the need to re-run most of the simulation.

The Strehl ratio of a single beam is de�ned to be the intensity in the center of the aberrated
image divided by the central intensity of an Airy disk. Ignoring scintillation e�ects, we can
write the wavefront across the aperture as

p
I0e

i'(R�;�) where I0 is the classical intensity.
The Strehl ratio will then be
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����
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�2
; (19)

where the wavefront phase is now given by

'(R�; �) =
2�

�
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j=2

ajZj(�; �) : (20)

Note that we do not include the �rst Zernike mode of piston phase as it represents the mean
phase across the aperture and does not contribute to Strehl.

It is also possible to approximate Strehl using the relation

S � e��
2
' (21)

where �2' is the phase variance across the aperture. This can be calculated using
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=
4�2

�2

jmaxX
j=2

a2j (22)

due to the orthogonality of the Zernike polynomials. Calculating the phase variance then
becomes a matter of squaring and summing up the Zernike terms and converting to the
correct dimensions of radians squared. The Strehl can then calculated for each frame using

S � exp

0
@4�2

�2

jmaxX
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a2j

1
A : (23)

The long term average of the Strehl will be

hSi � eh��
2
'i = exp

0
@4�2

�2
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j=2

ha2ji
1
A : (24)

Expressions for the coe�cient variances ha2ji for atmospheric e�ects alone can be found in
the work of Noll (1976).

The calculation of visibility works in a similar fashion. The classical intensity of two beams
combined in the aperture plane at the wavenumber � = 1

� and an optical bandwidth of ��
is

I(�; �) = 1 + V
sin(�OPD(R�; �)��)

�OPD(R�; �)��
cos(2� �OPD(R�; �)+ �V ) (25)

where V is the visibility magnitude, �V is the visibility phase and OPD(R�; �) is the optical
path-length. The OPD can be calculated using the a1 parameters for the vacuum, glass
and air paths modi�ed by the appropriate refraction coe�cients:

OPD(R�; �) = a1;vacuum+ naira1;air + nglassa1;glass+
jmaxX
j=2

ajZj(�; �): (26)

The total classical intensity can then be used as a probability density function to generate
random photon events using Poisson statistics. The measured visibility magnitude and
phase can be calculated using the techniques described by Tango & Twiss (1980) and fringe
tracking algorithms such as group delay tracking (Lawson 1994) can be implemented. Other
measurement systems can be modeled in a similar manner. Figure 2 contains some examples
of simulated fringes using 105 Zernike modes, 10 cm seeing, an outer scale length of 200m
and at a wavelength of 500nm. Each frame contains 128� 128 pixels, is 5ms apart and the
wind speed was set to 10ms�1.

Like Strehl ratio, visibility magnitude can also be approximated using the phase variance
de�ned in Equation 22 and the approximation to visibility given by Tango & Twiss (1980)

�2 = 1� 2�2' = 1� 8�2

�2

jmaxX
j=2

a2j (27)

where � is the visibility transfer factor, that is, the measured visibility is Vmeas = � V .

Figure 3 shows an example of the results of a series of simulations for various D=r0 values.
The solid lines represent the visibility and Strehl predicted by Tango & Twiss (1980), the
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FIGURE 2. Results of a simulation run using the �rst 105 Zernike polynomials. Each frame
represents a sample 5 milliseconds apart from top left to bottom right for two 1 meter apertures
100 meters apart. The seeing was set to r0=10cm and L0=200m and the calculations are for
monochromatic light at a wavelength of 0.5 microns.
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FIGURE 3. Simulation results compared to the Zernike approximation set out in the text and the
analytical formulation by Tango & Twiss (1980). The top plot shows how the visibility changes with
D=r0 and the bottom plot shows Strehl ratio changes with D=r0. The simulations were performed
using 105 Zernike terms, a wind speed of 10 ms�1 and an in�nite outer-scale length. The a tip/tilt
system was modeled based on the SUSI device (ten Brummelaar & Tango 1994) and applied to the
wavefront data before Strehl ratios or visibilities were measured.
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dashed line is the approximations given in Equations 23 and 27 while the points represent
full simulations using Equations 19 and 25. Once again 105 Zernike modes were used in a
128 � 128 pixel aperture, a wind speed of 10ms�1 and a monochromatic light at 500nm.
Each simulation was for 5 seconds using 1ms samples. The tip/tilt servo model was based
upon the system build for the Sydney University Stellar Interferometer (ten Brummelaar
& Tango 1994) and the outer scale length was set to in�nity. The error bars represent the
standard deviation of the Strehl and visibility measurements.

6. USING MULTIPLE SUB-APERTURES

Choosing the optimum aperture size to use is a compromise between photon statistics and
atmospheric turbulence. If the aperture is too small too few photons are available for
good signal to noise, while if the aperture is too large wavefront distortions will reduce
the visibility and signal to noise ratio. Buscher (1988) has shown that for a noise limited
detector the optimum aperture diameter is approximately 3r0. There are two ways of taking
advantage of apertures larger than this:

� Correct the tip/tilt across the entire aperture and then divide it into many sub-
apertures.

� Employ high order adaptive optics (AO) across the entire aperture. The simplest
form of this would be to have a tip/tilt servo for each sub-aperture.

The former will be less costly while the later may have the greatest potential bene�t for
very large apertures.

While it is possible to calculate sub-apertures directly from the Zernike coe�cients it is
sometimes more useful to transform to a new aperture with a new set of coe�cients. The �rst
step in this process is to show that the statistics of the Zernike coe�cients are independent
of an aperture rotation, thereby decreasing the number of parameters required. We begin
with an aperture A with radius R whose Zernike coe�cients are aj and rotate the wavefront
'A(R�

0; �0) by an angle � to yield a new aperture B with wavefront'B(R�; �) whose Zernike
coe�cients are bj . The wavefront shape across the aperture is then

'B(R�; �) = 'A(R�
0; �0 + �) =

jmaxX
j=1

ajZj(�
0; �0 + �) =

jmaxX
j=1

bjZj(�; �): (28)

Therefore, using Equation 49 the new coordinate system bj is related to the old coordinate
system aj via

bj =
Z
d�W (�)'B(R�; �)Zj(�; �)

=

Z
d�W (�)

0
@jmaxX
j0=1

aj0Zj0(�; � + �)

1
A Zj(�; �)

=
jmaxX
j0=1

aj0I1jj0 (29)
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where

I1jj0 =

Z
d�W (�)Zj0(�; �+ �)Zj(�; �): (30)

Using the orthogonality properties of the Zernike polynomials it can be shown that

I1jj0 =

8>>>><
>>>>:

0 form 6=m0 or n 6= n0;
1 for n = n0 andm =m0 = 0;

cosm� for n = n0; m =m0 6= 0 and both j and j0 odd or even,
sinm� for n = n0; m =m0 6= 0; j even and j0 odd,

� sinm� for n = n0; m =m0 6= 0; j odd and j0 even.

(31)

The only modes of importance are those for which n = n0 and m = m0 and we need consider
only three cases: m = 0, m 6= 0 and j even, and m 6= 0 and j odd. Combining Equations
29 and 31 results in

bj;m=0 = aj0;m=0; (32)

bj;m6=0;j even = aj0 even cosm�+ aj0 odd sinm� and (33)

bj;m6=0;j odd = aj0 odd cosm�� aj0 even sinm�: (34)

Combining this with the results of Noll (1976) then gives

hb2ji = ha2ji: (35)

The variance of the coe�cients in the rotated aperture are therefore the same as those of
the original aperture and it will only be necessary to consider radius change and position
change in a single direction when studying a sub-aperture.

The sub-aperture will have a radius fR where 0 < f < 1 and will lie a distance �0 from the
aperture center along the X axis. Once again the original aperture will have the wavefront
'A(R�

0; �0) and the coe�cients aj while the sub-aperture has the wavefront 'B(fR�; �) and
the coe�cients bj. The coordinate systems are displayed in Figure 4 and are related via the
equations

sin �0 =
f� sin �

�0
;

cos �0 =
�0 + f� cos �

�0
and

�02 = �20 + f2�2 + 2��0f cos �: (36)

The new coe�cients bj are related to the old coe�cients aj0 via

bj =
jmaxX
j0=1

aj0
Z
d�W (�)Zj(�; �)Zj0(�

0; �0) =
jmaxX
j0=1

aj0I2jj0 : (37)

If no tip/tilt correction is made the variances of the coe�cients in the new aperture will
depend only on the current seeing conditions so scale with radius to the �ve thirds power

hb2ji = f5=3 ha2ji: (38)
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FIGURE 4. De�nition of the axes for creating a sub-aperture. The primary aperture has the
phase pro�le �A(�0; �0) and a radius of R. The sub-aperture lies along the x axis at a distance �0
from the origin and has a radius of fR and the phase pro�le �B(�; �).

In most optical arrays, whether using AO or not, the wavefront tilt across the entire aperture
will be servo-ed out by the tip/tilt system and the piston terms removed by the OPLEs.
Thus we need to know how a reduction in the variances ha21i, ha22i and ha23i a�ect the
variances of the bj coe�cients. The contribution to hb2ji by the power in the j 0th mode of
the original aperture is given by

VAR(bj; aj0) = ha2j0iI2jj0 + 2
jmaxX
k=1

hakaj0iI2jkI2jj0 : (39)

Using Equations 36 and 37 it can be shown that

I2j1 =

�
1 for j = 1
0 otherwise

; (40)

I2j2 =

8<
:

2�0 for j = 1
f for j = 2
0 otherwise

(41)

and

I2j3 =

�
f for j = 3
0 otherwise

: (42)

With Equations 38 through 42 it is now possible to write the mode variances in the sub-
aperture, given that the piston and tilt terms have been removed from the main aperture

hb21i = f5=3ha21i � 4�20ha22i � 4
p
2�0(3�

3
0 � 2�0 + 3f2�0)ha2a8i (43)

hb22i = (f5=3 � f2)ha22i �
p
2(9�20f

2 + 2f4 � 2f2)ha2a8i (44)

hb23i = (f5=3 � f2)ha23i �
p
2(3�20f

2 + 2f4 � 2f2)ha3a7i (45)
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FIGURE 5. The Strehl ratio required of an adaptive optics system to match the signal to noise
performance of using seven optimized sub-apertures for a range of seeing conditions and photon

uxes.

hb2j>3i = f5=3ha2j i (46)

and the total phase variance within the sub-aperture

�2'B = f5=3�2'A �
4�2

�2

�
2f2ha22i �

p
2(12�2of

2 + 4f4 � 4f2)ha2a8i
�
: (47)

Using the approximate forms for Strehl and visibility from section 5 and Equation 47 it
is possible to investigate the performance of an AO system as compared to using multiple
sub-apertures. An example is given in Figure 5 for a one meter aperture where the Strehl
ratio required of an AO to match the signal to noise performance of seven sub-apertures has
been plotted for various seeing conditions and photon 
uxes. The signal to noise expression
from Tango & Twiss (1980) has been used and it has been assumed that the AO system
requires 50% of the photon 
ux for the wavefront sensor. The approximation that Strehl
and visibility have similar values has also been employed (ten Brummelaar, Bagnuolo, &
Ridgway 1995).

During times of good seeing (r0 > 10cm) an AO system would need to achieve Strehl ratios
of 0.15 or better in order to out-perform seven sub-apertures. Apart from in the infra-red,
this is a tall order for an AO system and it is doubtful that it would be worth the expense.
During times of bad seeing an AO system need not achieve very high Strehls, although,
in the worst seeing conditions it is not clear that an AO system would work at all. These
results will scale with aperture, although for large apertures many more sub-apertures are
possible.
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7. CONCLUSION

In the absence of an analytical solution computer simulations are a powerful method of
investigating the behavior of complex astronomical optical systems. Unfortunately these
simulations are often computationally expensive and take a long time to calculate. Using
the polynomials of Zernike to represent the physical path of the wavefront in each aperture,
rather than phase, it is possible to perform most of these simulations without the need
to choose a wavelength or pixilation scale. Once a series of Zernike coe�cients has been
generated one need only modify the appropriate modes, rather than perform a calculation on
each pixel, when modeling the optical system. The a�ects of each optic, including surface
defects and mirror sag, are easily modeled in this way as is a tip/tilt servo and path-
length equalizer. Visibility and Strehl ratio can then be calculated directly, after choosing
a wavelength and pixilation scale, or approximations based on the Zernike coe�cients can
be used.
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A. ZERNIKE POLYNOMIAL DEFINITION

Using polar coordinates � and �, normalized for an unobscured aperture of radius R, the
phase of the wavefront across the aperture can be written

'(R�; �) =
X
j

ajZj(�; �) (48)

where aj are the expansion coe�cients given by

aj =
Z
d�W (�)'(R�; �)Zj(�; �): (49)

The Zernike polynomials themselves are given by

Zj(�; �) =
p
n + 1Rm

n (�)�
8<
:

p
2 cosm� m 6= 0; j evenp
2 sinm� m 6= 0; j odd

1 m = 0
(50)

where

Rm
n (�) =

(n�m)=2X
s=0

(�1)s(n� s)!

s! [(n+m)=2� s]! [(n�m)=2� s]!
�n�2s: (51)

The constants m and n are integers such that m � n and n � jmj is even. The index j is
used to order the modes.

The weighting function

W (�) =

�
1=� � � 1
0 � > 1

(52)

is added so that the integrals can be taken over all space.

Zernike polynomials follow the orthogonality relationZ
drW (r)Zj(r)Zj0(r) = �jj0 : (53)

and have the Fourier transform

Qj(k; �) =
p
n+ 1

Jn+1(2�k)

�k
�

8><
>:

(�1)(n�m)=2 im
p
2 cosm� m 6= 0; even j

(�1)(n�m)=2 im
p
2 sinm� m 6= 0; odd j

(�1)n=2 m = 0

: (54)
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