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ABSTRACT: In this paper we analyze the problems of fringe pattern estimation in optical stellar
interferometry that are associated with optical path errors. Our first finding is that an optimal fringe
tracking system must track with path length errors of less than about one-eighth of the coherence
length. The second is that if phase closure estimation is to be achieved at the lowest possible light
levels, the time scale of fringe wander must not be less than about 10% of the total observation time.

1. INTRODUCTION

A Michelson stellar interferometer operating in a phase-coherent mode uses adaptive systems
to compensate for atmospheric propagation effects (Tango & Twiss 1980, Shao & Colavita
1992). One of these systems is called a fringe tracker which tries to compensate for the
differential time delay that it takes the light to reach the different telescopes. After the
beams have been corrected for the differential time delays (and wavefront distortion effects,
such as tip-tilt), they are delivered to a beam combination system in which they make an
interference pattern. This interference pattern gives phase and amplitude information which
allows for image construction. General introductions to optical astronomical interferometry
are to be found in the books by Goodman (1985) and Thompson, Moran & Swenson (1986),
and the reviews by Tango & Twiss (1980) and Shao & Colavita (1992). Shao et al. (1988)
describe a fringe tracker in their discussion on the Mark III stellar interferometer. Others
have analyzed problems involved with fringe tracking using statistical methods (Lawson
1995, ten Brummelaar 1997).

In practice, the fringe tracker does not do its job perfectly, and the remaining differential
time delay is called the path length compensation error (PLCE). The size of the PLCE’s
may be many wavelengths (ten Brummelaar 1994). The PLCE is a function of time and
this temporal variation is called fringe wander. The typical length of time for the fringes to
move enough to cause significant smearing is called the coherence time. The term “coherence
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time” also refers to a spectral property of the light, but we will not use it in that context
here. The problem of determining the optimal exposure time for the individual frames
has been discussed in the contexts of speckle interferometry (O’Donnell 1980), and optical
stellar interferometry (Buscher 1988, ten Brummelaar 1997). The general consensus is that
the optimal integration is on the order of the coherence time. The aim of this paper is to
evaluate the information content of three beams in an image-plane combination system as
a function of their PLCE’s. We address two questions:

1. How much information is lost when the PLCE’s are larger than a few wavelengths?

2. How much information is lost when the entire observation period is much greater than
the coherence time, making it necessary to average incoherently over many exposures?

We will answer the first question by considering the amount of information contained in a
single exposure taken when the the PLCE’s are of the same order as the coherence length
(which is the width of the the Fourier transform of the bandpass function). In order to
answer the second question and not confuse the discussion with issues involved in the first
question, we will consider PLCE’s which are smaller than the coherence length, but random
within 0 to 27 radians. In both discussions we will assume the beams have passed through
a separate fringe tracking system, which, as far as this analysis is concerned, is a “black
box” that gives the beams their differential time delays.

2. THE MODEL

We will assume that the corrected light leaving the fringe trackers goes into an image-plane
beam combination system, as follows: Consider a variant of Young’s double slit experiment,
which has three collinear pinholes spaced at a ratio of 1:2. The light exiting the pinholes is
from the fringe trackers, so it is partially coherent. The intensity pattern on the detector is
an Airy pattern (the diffraction pattern of a single pinhole) multiplied by a sum of sinusoids
which have spatial frequencies of ratios 1 : 2 : 3, with the highest frequency being due to
the most distantly separated pair. Many optics texts have a picture of such a pattern made
with two beams in connection a discussion of partial coherence, two examples are the texts
by Goodman (1985) and Born & Wolf (1965). This set-up is a simple example of a non-
redundant beam combining system. Non-redundant beam combination has been discussed
in the contexts of aperture masking and optical stellar interferometry by at least several
authors (Haniff 1989, Buscher 1988, ten Brumelaar 1994).

Fringe wander causes the interference pattern to move across the detector. In this paper
we will take the point of view that the total amount of time for all of the measurements is
fixed at T'. This time is divided up into m equal subintervals of duration ¢ = T'/m, which
are of the order of the coherence time. We will make the simplifying assumption that there
is no fringe wander in each of the m subintervals, but allow each subinterval to have its own
independent PLCE’s. We will assume that the exposures are statistically identical.

We will assume that a two-dimensional detector array is centered on the diffraction envelope
(the Airy pattern due to the pinholes), which is given by the real, positive function Q'(z,y),
and normalized to unity. Thus, [Q'(z,y)dzdy = 1. If the light and dark bands are
parallel to the y-axis, we may integrate all of the photon counts over y and define a new
diffraction envelope function Q(z) = [Q'(z,y)dy.
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If the light beams enter the beam combiner through identical pinholes, the diffraction en-
velope will be given by the formula for Fraunhofer diffraction at a circular aperture (Born
& Wolf 1965). Thus, Q'(z,y) o Ji(A/22 +y2)/ /22 + 32, where J; is the Bessel func-
tion of the first kind, x and y are unitless and A is a unitless scale factor. Fortunately,
the side-lobes of this function are small and a two-dimensional Gaussian fits the main lobe
reasonably well. We will approximate the one-dimensional diffraction envelope by

4

Q) = —=expl-16s%). (1)
Equation 1 is arranged so that Q(1/2) = .0183Q(0). For convenience, we will take the
length of the detector to be 1. In our discussion of Question 2 we will use assume that
Qz) = L.
We will allow the light be polychromatic, but confined to a band Av about a frequency vy.
For simplicity, we will assume the mutual coherence functions are not functions of wave-
length. When the image is a very strong function of wavelength, or when the bandpass and
baselines are large enough so that the spatial frequencies vary significantly over the band-
pass, a more complicated analysis is required. The complez visibilities are the normalized
mutual coherence functions (Goodman 1985), and they have magnitudes Vio, Vo3 and Vig
and phases ¢12, ¢23 and ¢13, where ¢;; = —¢;;. Since only the differences in compensa-
tion errors are important, we only need two parameters to describe them in a three-beam
system. The PLCE’s in the k' time subinterval are 012,k and 013k, and they are measured
relative to the first beam as the notation indicates. The expected number of photons from
each beam in the entire observation period is Ny. We will assume that this number can
be measured accurately, and we will take it to be a known quantity. The column vector of
unknown parameters is

0 = [Vig, Va3, Vi3, d12, P23, #31,012,1, - - -, 012,m, 013,1, - - - 7513,m]T ; (2)

where T denotes the transpose operator. @ represents the minimal set of parameters which
describe the intensity pattern.

Pyo, Py3 and Pi3 are the number of periods of each sinusoid that fit on the detector array
at the central frequency; they are proportional to the spatial frequencies of the fringes. The
ratio Pip : Pyg @ Pi3 is 1:2:3 (ie., Po = %P3, and Pj3 = 3Pj3), which is the same
as the distance ratios of the three pairs of pinholes. We will assume a square bandpass
function, & [T(42 ), where [] is the rectangle function as described by Bracewell (1978).
The expected value of the intensity pattern on the detector may be derived from Walkup
and Goodman’s quasi-monochromatic expression by multiplying the interference terms by a
phase shift that is proportional to the temporal frequency and integrating (Goodman 1985).
The expected value of the number of photons in the pixel centered at z; in the k" time
subinterval turns out to be

< Njk > = E[Nk(fl,‘])]
380 4+ 220V 500827 (Prazj + O12,k) + pr2lsinc[$4 (Prozj + S12,)]
= Q(:E) + Q%V%COSPW(P%:E]' + 513,k — 512,k) + gﬁgg]SinC[%(PzgfL‘j + 613,k — 612,k)] 3)

0

+ 220y 5c0s[2m(Prswj — di3 k) + ¢31]Sinc[%_:(P13$j — 013.1)]

mn

In Equation 3 n is the number of pixels, and m is the number of time subintervals in the
observation period. Thus, 1 < j <n,1 < k <m,and —1/2 < z; <1/2. &[] is
the expectation operator, which amounts to averaging over a (possibly multi-dimensional)
Poisson distribution in this paper.
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3. PHASE CLOSURE

The concept of phase closure has played an important role in astronomical aperture synthe-
sis. A closure phase is a linear combination of phases that is independent of the PLCE’s.
Phase closure is discussed in considerable detail by Thompson, Moran, & Swenson (1986),
and the problem of estimating closure phases in the context of optical aperture synthesis
has received attention from a number of authors (Buscher 1988, Kulkarni 1989, Haniff 1989,
Roggemann 1996). The best way to illustrate the idea is by example. Let a19, ass and as;
stand for the phases of the cosines in Equation 3, e.g., ass = 2m(diz3r — di2k) + P23.
Evidently,

aiz + a3 + az1 = P12 + P23 + P31 = Y. (4)

1) is independent of the compensation errors and is called a closure phase. We should note
that one must take care to make sure that the measured value of v is not incorrect by
a multiple of 2. One way around this is to calculate the value of ¢y by multiplying the
observed complex visibilities (Kulkarni 1989).

4. THE ESTIMATION PROBLEM

4.1. Cramer-Rao bounds

We will address Question 1 of the introduction with a technique from estimation theory.
The general results in the section, i.e. those that are not specific to our problem, can be
found in books on estimation and detection theory, for example, the texts by Van Trees
(1968) and Helstrom (1995).

The Cramer-Rao inequality allows us to put a lower bound on the covariance matrix of
any unbiased estimator. This lower bound is called the Cramer-Rao bound (CRB), and we
will use it to estimate the variance of the measurement of the closure phase 1), which is a
function of the parameter vector 8. Under fairly general circumstances, in the limit of high
signal-to-noise, this bound is tight and the maximum likelihood estimator (MLE) achieves it
(the MLE is asymptotically unbiased; see Van Trees 1968, Helstrom 1995). Other bounding
procedures are available, many of which have important advantages over the CRB in certain
regimes. However, all of them are more difficult to calculate than the CRB. The paper by
Bell et al. has a discussion of such procedures in the introduction (Bell et al. 1997). The
Cramer-Rao inequality states that for any suitably dimensioned column vector a,

aTe[0-6)0-0T)a > aTF ta, (5)

where  is the estimator (e.g., the discrete Fourier transform (DFT)), £[(0 — 0)(0 — 0)T]
is the covariance matrix and F' is Fisher’s information matriz. The entries in Fisher’s
information matrix are given by

9?InP(v | )

Fi' = - )

where P(v | 0) is the conditional probability of measuring the data vector v given the
parameter vector @, of which 6; is the i*» component.

In our problem the data vector v corresponds to the vector of measured photo-counts with
components Nji, and @ was defined in Equation 2. Since determining the values of the
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PLCE’s is not the ultimate goal of most stellar interferometry experiments we will call
012,15+ -, 012,m, 013,15 - - - , 013, m nuisance parameters. In the presence of only photon noise,
the conditional probability in Equation 6 is given by Poisson counting statistics (Goodman
1985). Since each of the observations Nj; is statistically independent, their probability
density functions Pj;(N;;) multiply, and we have

lnP ’U | 0 i Xn: ]kln < N]k(O) >) - < N]k(O) > — ln(Njk!)], (7)

where < Nj; > was given by Equation 3.

To calculate the bounds on a quantity which depends on the parameter vector @, such as
the closure phase 1, we must transform the inverse of the Fisher information matrix. From
the definition of ¢ in Equation 4, we can write ¢y = (@). The bound is given by (Walkup

& Goodman 1973)
) 9 0
elh ) = XY 5 (g Q
i g t

In this particular problem, the CRB’s on the estimators of the non-nuisance parameters
are independent of the number of subintervals m, and we demonstrate this fact in the
Appendix. This implies that we cannot use the CRB to calculate the dependence of the
error covariance matrix on m. Clearly, the errors must ultimately increase with m because
when m = 3Nj there is only about one photon per interval, a situation likely to lead to
less than satisfactory results. The CRB is significantly less than the greatest lower bound
when the signal-to-noise ratio falls below a certain value. This value is called the threshold
(Seidman 1970). We must use another procedure to analyze the performance of the system
below the threshold.

4.2. The DFT closure phase estimator

In our problem, the CRB’s on the non-nuisance parameters is independent of the number
of subintervals m (see Appendix), so we must use another method to address Question 2
in the Introduction. We may gain some insight into the problem by assuming a constant
diffraction envelope and no leakage (which requires that an integer number of fringe periods
fit across the detector; see Goodman 1985, Nakadate 1988), setting the bandwidth to zero,
and using Roggemann’s analytical results. Roggemann’s method is an implementation of the
ideas presented by Walkup (1973), Goodman(1985), and Kulkarni (1989). The probability
distribution of the discrete Fourier transform (DFT) estimate of the closure phase is a
function of the parameter x, which itself is a function of the visibility magnitudes and light
level. For simplicity we will assume that all of the visibility magnitudes are the same. Using
our notation and making some obvious modifications, the variance of the DFT closure phase
estimator (setting the reference phase to zero) is given by Roggemann (1996)%.

™

Var[] = [ ¢?Py(eh;r)dy, 9)

—T

*Roggemann’s Equation 22, the probability density function of the DFT phase closure estimator, has an
error. The argument of the error function needs to be divided by v/2.
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where P\I;(l/;; k) is the probability of measuring 1, given the parameter x, and & is given by

(Roggemann 1996)

2 3

mo_ 3m N 6m . 4m
K2 ‘/7"2N06 V;"4N026 VYTGN[?e .

(10)

Since the Roggemann’s formula for x was derived for a two-beam system, it needs to be
modified so that the two beam system has the same number of photons and the same fringe
contrast as our three-beam system. V, is the reduced fringe contrast, which takes into
account the fact that when three or more beams form fringes on a detector, the effective
contrast of the fringes decreases. Ny, is the enhanced number of photons, it makes it so
that the total photon count is the same. In our case there are three beams, so V, = 2V/3
and Nge = 3Ny/2. It is clear from Equation 10 that when Ny/m is large, x is independent
of m. This behavior is consistent with the results of our CRB calculations discussed above,
and numerical experiments show quantitative agreement in the low visibility, high light level
regime. In fact, we can say that when either the second or third terms in Equation 10 are
comparable to the first, the system is operating below threshold (see Section 4.1).

5. RESULTS OF NUMERICAL CALCULATIONS

5.1. Mode coupling

Our numerical calculations show that the CRB on the variance of the estimate for any
one parameter (e.g., Vq2) depends on the values of the phases and amplitudes of the other
fringes. We will call this effect mode coupling for its analogy to problems in nonlinear
dynamics. The existence of mode coupling may be bit of a surprise, and it seems contrary
to the result by Walkup & Goodman. However, it is important to note that the maximum
likelihood estimate (which has a relationship to the CRB as described above) and the DFT
are only equivalent in the low-visibility regime (Walkup & Goodman 1973). Mode coupling
probably is the result of the multiplicative nature of photon noise.

Our numerical experiments indicate that the effect is no greater than about 5% when the
visibilities are near 0.1, and it insignificant for visibility values near 0.01. However, for vis-
ibilities near 0.5, the CRB’s change by as much as a factor two as the relative phases vary.
Since Ny factors out of the Fisher information matrix (see Appendix), our numerical exper-
iments could not determine the extent to which mode coupling depends on the number of
photons. Studying mode coupling would require a more sophisticated study which compares
the DFT and ML estimators at moderate visibility ranges with varying light levels.

5.2. CRB results

Before describing Figures 1 and 2 in detail, a few words are in order. Since the expected
number of photons per beam Ny factors out of Fisher’s information matrix (see Appendix),
we set Ng = 1. In order to remove the effects of mode coupling, all of the calculations
that follow in this section have the visibilities all set to 0.01. The reader may use a simple,
approximate procedure to “move” these figures into the visibility and intensity regime of
interest. All that is required is to multiply the variances by NV 1(.01/V)?, where Ny, and V
are the desired number of photons and visibility, respectively. Division by the visibility ratio
squared is reasonable because the variance DFT estimator scales as V2, and the CRB and
DFT variance are closely related as discussed above. This approximate adjustment breaks
down in the low intensity and high visibility regimes, for reasons discussed above. The
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reader may also wonder why the CRB’s are greater than the maximum possible variance of
the parameters since the variance of any reasonable estimator cannot exceed 72/3. This is
because the CRB is only a measure of the local curvature of the probability distribution,
which is insensitive to the boundaries of the parameter support in the high SNR regime.
By the words “period number” we mean P;3 and the reader will recall that P = Py3/3
and P23 = 2P13/3

Figures 1 and 2 show how the CRB on the variance of the closure phase estimator changes
as a function of period number for different PLCE values. For simplicity we have set
012 = d13 = PLCE. The curves in Figures 1 and 2 are calculated for 1% and 10%
bandpasses, respectively. We will take the number of oscillations in the central lobe to be
the definition of the coherence length. For example, the central lobe of the fringe envelope
contains 200 oscillations when the bandpass is 1% (assuming a sinc function, as we have
used here), so the coherence length would be equal to 200 wavelengths. Figure 1 clearly
demonstrates that the variance doubles its minimum value and rapidly increases the PLCE
increases past 1/8 of the coherence length, or 25 wavelengths, unless the period number
is large. Figure 2 leads us to the same conclusion about what happens to the information
content as the PLCE increases beyond 1/8 of the coherence length.

The reason that the variances in Figures 1 and 2 increase as a function of period number
for PLCE’s of zero is that more of the fringe envelope fits into the diffraction envelope while
the total number of photons is held constant. This increases the variance because the fringe
contrast is small in the outer regions of the fringe envelope. The fact that the amount of
the fringe envelope that fits into the diffraction envelope increases with period number also
explains why the variance decreases as a function of period number when the PLCE’s are
large: When the period number is small only the low contrast part of the fringe envelope
fits into the diffraction envelope, but the higher contrasts regions of the fringe envelope
“move” into the diffraction envelope as the period number increases.

5.3. DFT results

Figure 3 shows how the variance of the DF'T closure phase estimator depends on the number
of subintervals m and the number of photons per beam Ny. The y-axis is the variance of
the DFT closure phase estimator and the x-axis is m. The numbers next to the curves
correspond to Ny. This calculation was done with all three visibility magnitudes set to
0.1. This is reasonable, because any imaging interferometer must be able to perform in
the moderate visibility regime. The CRB’s predict that the phase closure variance of an
efficient estimator does not depend on m, and Figure 3 shows this to be the case when
Ny/m is large. When looking at Figure 3, the reader should keep in mind that variance of
0.1 rad? implies an RMS phase error of about 18°, which is on the order of the maximum
tolerable error. It is clear from this graph that if Ny is such that it produces a variance of
about 0.1 when m = 1, the variance does not double its minimum value until m is over
10.

6. CONCLUSION

This paper helps to place performance standards on fringe tracking systems which may be
used to optimize ground-based stellar interferometers. As we have stated several times, one
of our results is that the PLCE must be less 1/8 of the coherence length or the information
losses will be severe. Figures 1 and 2 show that, in principle, it is possible to make up
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phase closure variances: 1% bandwidth, various PLCE values
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FIGURE 1. CRB of phase closure variance vs. period number. Each curve is for a different
PLCE, according to its label. All three visibilities are set to 0.01. The bandpass is 1%, and a
Gaussian diffraction envelope is assumed.
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phase closure variances: 10% bandwidth, various PLCE values
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FIGURE 2.
PLCE, according to its label. All three visibilities are set to 0.01. The bandpass is 10%, and a
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CRB of phase closure variance vs. period number. Each curve is for a different
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DFT closure phase variance for different numbers of photo—counts
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set to 0.1. Each curve is for a different number of photons, Ny, according to its label. The bandpass

is infinitesimal and the diffraction envelope is taken to be a constant.
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for large PLCE’s by increasing the period number. However, the required period numbers
are large and increase with decreasing bandwidth. These figures also show that the phase
closure variance should not be a strong function of the period number as long as the PLCE’s
are smaller than about one-quarter of the coherence length. Figure 3 shows that one can
obtain useful phase closure measurements with the minimum possible number of photons
when the coherence time is greater than about 10% of the observation time. There are two
applications of the work presented here:

e A comparison of Figures 1 and 2 suggests that dispersing the light spectrally within
beam combination system (which would correspond to separating the wavelengths in
the y - direction in this example) will help to reduce the information loss associated
with large PLCE’s. This work also suggests that a quantitative information theoretical
model, more elaborate than that given here, might prove beneficial when designing a
beam combination system.

e Comparing Figures 1, 2 and 3 to “light level vs. rms PLCE” and “light level vs.
coherence time” curves of a fringe tracking system can help determine the optimal
way to divide the available light between the beam combination and the fringe tracking
systems.

The analysis in this paper leads to two questions whose answers will determine the future of
ground based optical stellar interferometry. The first is, “What are the signal requirements
(i.e., light level and degree of wavefront correction) for fringe tracking system to perform
as outlined above?” The next question is a logical extension of first, “How does one make
an adaptive optics system which meets the requirements of such a fringe tracker?” ten
Brummelaar et al. have done some work which goes toward answering the first question
(ten Brummelaar et al. 1995).
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Appendix: Demonstration that the Cramer-Rao bound is independent of
the number of subintervals

In the analysis to follow, the three-beam experiment is unnecessarily complicated and con-
sidering a two-beam experiment is sufficient. The equation that follows is a simplified
version of Equation 3. There is no need for the subscripts that contain the beam indices,
so we drop them, e.g., V1o — V. The result is

< Njp > = Q(z){ 222 + 280V cos[2n (P + dk) + ¢]sinc[€—;/P(acj + )] }- (11)

mn

For the sake of further algebraic simplicity, we will also assume that the parameter V is
known ahead of time, which reduces the number of parameters that we must determine.
We used numerical experiments to verify its extension to the full three-beam case. This
example also serves to illustrate the procedure for calculating CRB’s.

Since we assume that we already know V' and need to determine bounds on ¢ and {01, ..., 0p },
the vector of unknowns is

0 = [$,01,....0m] . (12)

Using Equations 7 and 6, we may write the following expression for the elements of the
Fisher information matrix

aZIHP(’U | 0) UL 1 o< Njk > 0< Njk >

06:06 |~ S <Np> b, 09,

fu = (F)ag = =€ (13)

The matrix described by Equation 13 has a very simple structure. We assumed that the
observations in each time subinterval are independent, which makes the d;;- 0o terms zero
unless k1 = k2. If the §’s are not large enough to shift the intensity pattern through a
significant fraction of its fringe envelope, each of these diagonal terms will be the same (each
term is a sum over all of the pixels). Furthermore, < Nj; > and its first derivatives are all
proportional to No/m. A glance at Equation 13 shows that each of the diagonal elements,
except the first, can be written written as cNy/m, where c is a constant. Similar reasoning
shows that the ¢-0 matrix elements are all equal and have the form bNy/m, where b is a
constant. The ¢-¢ element is a sum with mn terms, each of which is proportional to Ny/m.
Therefore, it does not depend on m and can be written in the form Nya, where a is another
constant. The (m + 1) x (m + 1) Fisher information matrix takes the form

a b/m ... ... b/m
b/m ¢/m 0 ... 0
F = Ny : 0o .o : (14)
: : (|
b/m 0 ... 0 ¢/m

At this point it is also clear that F~! scales as 1/Ny. The final step is to show that the
1-1 element of F~! is independent of m. This involves almost no more effort than solving
a 2 X 2 system of equations.
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