
CHARA Technical Report

No. 74 4 June 1998

Local Clocks for Device Controllers

T.A. ten Brummelaar (CHARA)

1. INTRODUCTION AND GENERAL INFORMATION

The CHARA Array will employ �ve 1-m size, Alt/Az style telescopes at a site on Mount
Wilson in southern California. The telescopes will be housed separately and operated
remotely from a central laboratory. Light from each telescope will be directed by subsequent

at mirrors through vacuum pipes to additional optics and instrumentation at the central
laboratory. More information about the CHARA Array can be found at our WWW home
page listed below.

As set out in Technical Report TR68, it is critical for the multiple control computers in the
array control system to function synchronously. This technical report describes the hard-
ware and software interface required in each control computer to enable such synchronous
operation.

2. THE MASTER CLOCK

The master clock will provide three di�erent timing signals:

1. A 16MHz pulse

2. A 1mS pulse

3. A 1S pulse

each of standard TTL voltages and assumed to go from a low state to a high state at the
critical time. Line drivers will probably be required to distribute these signals around the
OPLE/BCL building but will not be considered further in this report.

The 16MHz signal is provided only for the OPLE cart control system, a `black-box' being
supplied under contract by JPL. The OPLE electronics also require the 1-second tick in
order to properly synchronize to the absolute time of the Array master clock. The OPLE
system will not be discussed any further. All other controllers will use the 1-millisecond
and 1-second ticks.

1Center for High Angular Resolution Astronomy, Georgia State University, Atlanta GA 30303-3083
TEL: (404) 651-2932, FAX: (404) 651-1389, FTP: ftp.chara.gsu.edu, WWW: http://www.chara.gsu.edu

TR 74 � 1



TECHNICAL REPORT NO. 74

As shown in TR68, the 16MHz will be used as a time standard and must be accurate to
within one part in 109.

3. LOCAL CLOCKS

The local clocks are really just a means of getting the 1-millisecond and 1-second ticks into
a PC running RT-Linux. The 1-millisecond ticks will cause an interrupt while the PC must
poll for the 1-second tick.

For the sake of simplicity, and cheapness, the local clocks will use the standard PC parallel
port. This port provides interrupt access (IRQ 7), and has several TTL inputs and outputs
apart from the 8-bit port used for sending data. Thus, one TTL input will be used to �re
interrupts and will connect to the 1-millisecond clock, a second TTL input will be used
for the 1-second ticks, and the remaining three TTL inputs will be available for use by
developers of individual control packages.

This is enough functionality for running the clock; however, since there are several input
and output pins on the interface they may as well be made available to developers of
control systems. Thus the 8-bit data port and two of the available TTL output pins will be
used to implement two 8-bit digit-analog-converters (DACs). These DACs can be used by
developers for almost anything they desire, but the intent is for aiding in the debugging of
control software. When working on a digital servo it can be an invaluable aid to be able to
see in real time what is going on. A variable in the software can be mapped to one of the
DACs and it's behavior displayed on an oscilloscope. The two remaining TTL output pins
on the port will also be available for use by developers.

The electronics will reside in a small metal box designed to �t inside a standard drive port
in a PC. Furthermore, the electronics have been designed to use the same power supply as
a standard disk drive so no separate power supply is required. The unit will have the same
standard power supply socket as used in disk drives.

The connections to the outside world will be a D25 socket for connecting to the parallel port
and BNC connectors for the rest of the signal inputs and outputs. All of these plugs will
be mounted in bus slot covers so that they will be accessible from the rear of the computer.

The input and output parts of the local clocks will now be discussed separately.

3.1. Input Electronics and Connections

A schematic diagram of the input electronics is shown in Figure 1 and the mapping of input
signals to the standard parallel port signal names is given in Table 1.

In order to protect the computer electronics, bu�ers are used in all signal lines. Thus if a
dangerous voltage is sent into the local clock, the clock electronics will be damaged and not
the computer mother-boards. The same will be true for the output electronics discussed in
the next section.

Apart from the bu�ers, the input signals all connect directly onto the 25-D socket, except
for the 1-second clock signal which is routed through a bipolar one-shot chip (74LS122).
This chip creates a TTL pulse 0.5 milliseconds long when it sees it's input go from a low
to a high state. Thus the 1-second clock tick will be visible by the control software for this
period after the interrupt caused by the 1-millisecond tick. This is necessary because only
one interrupt is available in the port and so the software will need to be able to poll for the

TR 74 � 2



LOCAL CLOCKS

FIGURE 1. Schematic of the input electronics for the RT-Linux local clocks. Note that this
does not show the bypass capacitors required for each chip.

TABLE 1. Input Connections

Input Signal Name Use

In 1 ERROR General purpose TTL input
In 2 BUSY General purpose TTL input
In 3 PE General purpose TTL input

1-mS Clock ACK 1-mS interrupts
1-S Clock SELECT 1-S synchronization

TR 74 � 3



TECHNICAL REPORT NO. 74

FIGURE 2. Schematic of the output electronics for the RT-Linux local clocks. Note that this
does not show the bypass capacitors required for each chip.

1-second tick. Thus, when the interrupt has been �red, the interrupt service routine has
0.5 milliseconds to check if the 1-second clock tick has also gone by. See section 4 for more
on the software clock tracking algorithm.

3.2. Output Electronics and Connections

A schematic diagram of the output electronics is shown in Figure 2 and the mapping of
output signals to the standard parallel port data and signal names is given in Table 2.

As for the input electronics, all lines are fully bu�ered. The general purpose output TTL
lines, Out 1 and Out 2, are connected directly to their respective bu�ered outputs. The
remaining signals are used to control the dual DAC chip (DAC8229).

The DAC chip requires a reference voltage, in this case supplied by a resistor divider network
(R9 and R10) and an inverting ampli�er (U5:C). Together these elements provide a �2.5
volt reference voltage. The output voltage of each DAC is given by

Vout = �Vref �
DATA

256
(1)

where DATA represents the number sent to the port data register. The DAC outputs will

TR 74 � 4



LOCAL CLOCKS

TABLE 2. Output Connections

Output Register Name Use

V 1 Data, SLCTIN and STROBE Device controllable 0-10 volt DAC output
V 2 Data, SLCTIN and STROBE Device controllable 0-10 volt DAC output
Out 1 INIT General purpose TTL output
Out 2 AUTOFD General purpose TTL output

therefore range from 0 to about 2.5 volts. The �nal two operational ampli�ers are used to
bring this into the range 0 to 10 volts.

Two control lines are required to make the DAC8229 function correctly. One selects between
the two DACs, while the second is used for latching the data. Table 3 shows the register
values required to control the DAC operation. Remember that before any control operation
some data must be present in the data register. In this table # signi�es a transition from 1
to 0. Also note that the register values listed are the software values placed in the control
register not the TTL values present on the port output. The writing process therefore

TABLE 3. DAC Control Signals

SLCT IN STROBE DAC 1 DAC 2

1 1 Write Hold
1 # Latch Hold
1 0 Hold Hold
0 1 Hold Write
0 # Hold Latch
0 0 Hold Hold

consists of three operations: select the DAC you want to write to; send the data; and �nally
latch the data.

4. SOFTWARE

All control programs, except for special cases like the TCS and OPLE systems, will run
under RT-Linux and follow the CHARA coding standards (see Technical Report TR70).
Furthermore, a standard RT module, chara sched, will be used to schedule real time tasks
and act as an interface between the user interface software, the local clock described above,
and the real-time tasks.

The CHARA scheduler is a simple interrupt driven real time scheduler �red by the 1-
millisecond clock. When loaded, the module initializes the port and interrupts, creates
communication channels between real-time tasks and the user interface program, initializes
a command structure, sets the DACs and output TTL lines to zero and starts the local
clock. The communications between real-time and asynchronous software is handled us-
ing RT-FIFOs as described in the RT-Linux documentation. Three FIFOs are provided,
COMM FIFO, DATA FIFO and ERR FIFO, which have obvious uses. The command and

TR 74 � 5



TECHNICAL REPORT NO. 74

error channels are handled by the chara scheduler for, strangely enough, processing com-
mands and errors. Commands can be created or destroyed by real time tasks and consist
of a single number (0{255), indicating the command, and a single datum (0{255). Errors
are written to ERR FIFO using a printf() like routine provided by chara sched. The data
channel is for use by the real time tasks and it is up to the programmer of each device to
de�ne the data formats.

While running, the �rst job of the scheduler is to increment the local time, and then poll to
see if the 1-second tick has also �red in the last period. If it has, the local clock is checked
to see if its value represents a whole second, and if not it is adjusted so that it does. The
software will keep a record of skipped ticks for debugging purposes. It is also possible that
the user interface program has previously sent a message containing the `real' time of the
next 1-second tick. In this case the scheduler, when it sees the next second tick, forces
the local clock to the correct value. The local time is available to all tasks running on the
system via a function (which, for the sake of performance, is in fact a macro).

The second job of the scheduler is to run the real time tasks at appropriate times. While
usually only a single task is run in each device it will be possible to run several. The
scheduler does no testing to check that the tasks run within their alloted time period, so
it is up to each programmer to check this (for which they will �nd the spare output TTL
ports and DACs very handy).

The scheduler also provides abstracted access to the DACs and the spare input and output
TTL lines. These are in the form of macro functions, such as

out1_on();

dac1(value);

x = in1();

and so on. These are examples and subject to name changes. Consult the CHARA Scheduler
manual (to be written) for the real details.

When unloaded the scheduler module releases the port interrupt and removes the commu-
nication �fos before exiting. It will also reset the DACs and output TTL ports. Remember
it will not be possible to unload the scheduler while any modules exist that rely on it.

TR 74 � 6


