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ABSTRACT: In response to the accumulation of the first substantial collection of 
observational data from the CHARA Array, obtained during the fall of 2001, a series of 
Mathcad programs has been developed as a means for reducing these data to calibrated 
visibilities. The Mathcad tools developed to date include routines that calculate estimated 
visibilities for single and double stars, ephemeredes from binary star orbital elements, (u,v) 
plane and projected baseline coverage for target stars, and the analysis of an observational 
dataset to yield a mean value of raw visibility. This Technical Report describes the last of these 
programs and presents the results from a set of data obtained during the night of 6 Nov 2001 
for the extrasolar planetary system upsilon Andromedae. 
 
 
1. INTRODUCTION 

 
This report complements TR (Theo’s draft), which considers the determination of visibility 
through the analysis of fringe power spectra. As we obtain an understanding of our data and 
the performance of the Array, it seems wise to develop more than one route for data analysis, 
and the effort described here has focused on the more straightforward relation between fringe 
amplitude and visibility. Mathcad was selected as an alternative to CHARA’s usual use of C or 
IDL mostly because of the author’s inexperience with those languages but also because of the 
intuitive nature of Mathcad and its usefulness in teaching interferometric data reduction in 
graduate level courses.  
 
This discussion is based upon the paper by Benson et al. (1995) and assumes the detection 
scheme shown in Figure 1 wherein two detectors look at opposite sides of a beam splitter 
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within which interference arises from beams input from a pair of telescopes whose path length 
difference has been zeroed. The notation used by Benson et al. (1995) is adopted here for ease 
of reference back to that paper.  

 

 
Fig.1 – Beam splitter combination geometry showing input and output beams with calibration shutters 

 
As one scans through the zero path condition, presently done using a piezo-driven dither 
mirror, the detectors on the A and B sides of the beam splitter see average signals related to the 
average reflected R and transmitted T components of the input beams multiplied by a detection 
gain factor G. The shutters at S1 and S2 are used to close either or both inputs to determine the 
bias (or “dark”) level of the detector and to permit determination of the reflection and 
transmission efficiencies as described below.  
 
As in Benson et al. (1995), we define the following: I1 and I2 are the input intensities of the 
beams to be combined (not directly measured in CHARA’s present configuration); r and t are 
the complex reflection and transmission coefficients for the beam splitter; R and T are the 
squared moduli of those coefficients; σ  is the wave number (1/λ); x is the path difference 
between the two beams; φ is a phase error arising from instrumental and atmospheric effects; 
and V is the visibility. Note from Figure 1 that R and T are not assumed to be the same in the 
two channels A and B. By normalizing each of the two detected signals to its average, the 
detection gain factors divide out, and one is left with normalized interferograms IA and IB 
given by: 
 

            IA(x) = 1 + {[2V(I1I2)0.5|rA||tA|] / [I1|rA|2 + I2|tA|2]} sinc(π∆σx) cos(2πσox + φ) (1) 
and 

            IB(x) = 1 – {[2V(I1I2)0.5|rB||tB|] / [I1|tB|2 + I2|rB|2]} sinc(π∆σx) cos(2πσox + φ). (2) 
  
Note the transposition of the beam splitter efficiencies r and t in the divisors, which arose from 
the normalization process. In the rest of this analysis, we assume that the sinc and cosine 
factors are unity at x = 0, which is where we measure the peak amplitude of the fringe.  
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Of course, the quantity φ leads to a statistical fluctuation in the cosine factor making it always 
less than 1. Effects contributing to φ include random path length variations arising from 
instrumental instabilities and variations in the effective air paths that together create piston 
error. There are also degrading effects arising from our current restriction to manual fringe 
tracking as well as from telescope tracking errors that lead to loss of image overlap.  
 
The practice of observing “calibration” stars of known visibility before and after the “target” 
star is assumed to correct for atmospheric and instrumental effects, but it would not 
compensate for losses in visibility due to guiding and fringe tracking errors if those effects are 
not randomly insinuating themselves into the data.  
 
At the zero path difference (the fringe center), equations (1) and (2) simplify to: 
 

                                        IA(x) = 1 + 2V(I1I2)0.5|rA||tA| / (I1|rA|2 + I2|tA|2) (3) 
and 

                                        IB(x) = 1 – 2V(I1I2)0.5|rB||tB| / (I1|tB|2 + I2|rB|2) . (4) 
  
Defining the quantities α = I2/I1 and βΑ,Β = |rA,B|2/|tA,B|2 = RA,B/TA,B, equations (3) and (4) can be 
rewritten as: 
 

                                                IA(x) = 1 + 2V(αβΑ)0.5 / (α + βΑ) (5) 
and 

                                                IB(x) = 1 – 2V(αβΒ)0.5 / (1 + αβΒ) . (6) 
 
 
The divisors in the A and B channel interferograms are not of the same form, a fact that might 
be missed in a casual reading of Benson et al. (1995). In any case, the ratios α and βΑ,Β are 
close to 1. Taking the difference between equations (5) and (6) yields: 
 

                                   IA(x) –  IB(x)  =  2V[(αβΑ)0.5/(α + βΑ) + (αβΒ)0.5 /(1 + αβΒ)]  (7) 
which is rewritten 

                             V  = 0.5[IA(x)  –  IB(x)] [(αβΑ)0.5/(α + βΑ) + (αβΒ)0.5 /(1 + αβΒ)]-1 (8) 
or 

                                                    V  = 0.5Γ[IA(x)  –  IB(x)] (9) 
where 

                                 Γ =   [(αβΑ)0.5/(α + βΑ) + (αβΒ)0.5 /(1 + αβΒ)]-1   .                             (10) 
 

The factor Γ would be unity in the ideal case of α = βΑ,Β = 1.  In the actual case of imbalanced 
beams and unequal transmission and reflection efficiencies, the placement of shutters in the 
beam combiner as indicated in Figure 1 provides a means for determining combinations of the 
ratios α and βΑ,Β and evaluating Γ. Inspection of Figure 1 shows that when shutter S1 is closed, 
the average signal reaching detector A, indicated as IAS1, is GAI2TA while that reaching B, IBS1, 
is GBI2RB. Similarly, when S2 is closed, IAS2 = GAI1RA and IBS2 = GBI1TB. Thus, we can use 
these shuttered signal levels to calculate the following quantities: 
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                                           γΒ =  αβB  =  (I2 / I1)(RB / TB)  =  IBS1 / IBS2 , (11) 
and 

                                           γΑ = βΑ/α  =  (I1 / I2)(RA / TA)  =  IAS2 / IAS1  .                           (12) 
 
Notice that the gains of the two channels divide out. Substituting these relations back into 
equation 10 provides the working equation into which we can insert the factors γΑ,Β determined 
from the shuttered signal levels detected by the A and B channels: 
 

                                           Γ =   [(γΑ)0.5/(1 + γΑ) + (γΒ)0.5 /(1 + γΒ)]-1   . (13) 
 

The A and B sides of the beam splitter can separately processed in which case equations (5) 
and (6) can be rewritten as: 
 

                                           
                                                IA(x) = 1 + [2VγA

0.5 / (1 + γA)] (14) 
and 

                                           
                                                IB(x) = 1 + [2VγB

0.5 / (1 + γB)]   . (14) 
 

 
The practice at the beginning and end of each observation sequence is to alternately close S1, 
then both S1 and S2, then S2, thereby providing information to evaluate equation (13). Figure 2 
shows as an example the observing sequence as recorded on side A of the beam splitter for a 
data set taken for the star HR 409 on the night of 6 Nov 2001. In this particular data sequence, 
it is obvious that the quantity α/β is close to 1. The color difference between the target star and 
its calibrator is probably the largest factor in determining whether is it important to explicitly 
determine α and β. It is certainly straightforward to do so as long as the shuttered signal levels 
are recorded. For the data reduced here, Γ was always within 1% of 0.5. 
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Fig2 – Shutter data obtained at the beginning of a data sequence. Steps are in milliseconds of time. 
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2.   STEPS IN DATA PROCESSING 
 

Data sets obtained during the fall of 2001 generally consist of ten-minute accumulations of 
scans, in millisecond time steps, with shuttering sequences at the beginning and end. The first 
step in the processing is to manually locate the shuttering sequences and to calculate values 
averaged over 5,000 samples for IAS1, IAS2, IBS1, IBS2 and the bias levels at the beginning and 
end of the data set. These values are then used to calculate the ratios α and β and the 
multiplicative factor Γ. 
 
The program then uses the dither mirror position information, recorded in microns for each 
sample, to locate the beginning and ending of a dither mirror scan at a “safe” distance beyond 
the S2 shutter data and to slice the data set into arrays with each row comprising a single scan. 
Ten-minute data sets typically yield 650 scans each consisting of 837 samples. Each scan is 
padded at the beginning and end with the average scan value to ensure that scans of 1024 
samples are available for fast Fourier processing. Examples of simultaneous scans recorded on 
the A and B sides of the beam splitter are shown in Figure 3. 
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Fig 3. Raw A and B scans, with B offset for clarity, are shown. The fringe packet late in the scan is apparent.  
 

FFTs are then taken of each scan for the purpose of applying a low-pass filter in which all 
components of the transform are zeroed beyond 15 Hz. The inverted low-pass filtered scans 
then provide smoothed versions of each scan for the purpose of normalization. Figure 4 shows 
such a smoothed scan superimposed on the raw, unfiltered version.  
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10300 k  
Fig 4. A raw scan containing the high-frequency fringe information is shown superimposed  

on its low-pass filtered version just prior to normalization. 
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The bias value, which remained within 1% of 300 counts for all the data reduced here, is next 
subtracted from each A and B scan, and vector division with respect to its low-pass filtered 
version normalizes each scan. Figure 5 shows the result of normalizing the scan in Figure 4. 
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Fig 5. The scan shown in Figure 4 has been normalized to its low-pass filtered version. 

 
At this point, the differences between the normalized A and B scans are calculated and adopted 
as defining “visibility scans” according to equation (9) whose amplitudes will be extracted as 
representations of V. The visibility scan determined by combining the normalized B scan with 
it’s A partner from Figure 5 is shown in Figure 6. 
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Fig 6. The “visibility scan”, a realization of Equation (9), is shown after combining the normalized scan 
in Figure 5 with the simultaneously observed and normalized B scan.  

 
The next step is to band-pass filter each visibility scan in a frequency regime surrounding the 
expected fringe frequency. This is accomplished by Fourier transforming the visibility scans, 
suppressing all frequencies lower than 70 Hz to one-fifth their values, locating the peak in the 
power spectrum and keeping only those components within 25 Hz of the peak. (In the data set 
used as the example here, the average bandpass center of the peak was 108.4 Hz with an rms 
variation of 13.1 Hz.) This filtering step suppresses the high frequency noise fluctuations that 
would otherwise significantly bias the estimate of the fringe amplitude and suppresses a 
persistent component around 60 Hz.  
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Fig 7. The filtered region of the power spectrum, centered upon the fringe peak, is shown with power in the 

frequencies outside this region set to zero. 
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Fig 8. The resulting band-pass filtered visibility scan is shown above. 

 
Figure 7 shows the band-pass filtering applied to the power spectrum of the visibility scan 
developed in the earlier figures while Figure 8 shows the resulting smoothed visibility scan 
after inversion of the band-pass filtered power spectrum. Figure 9 shows the band-pass filtered 
fringe packet more clearly. 
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Fig 9.  A higher resolution view of the fringe packet in Fig. 8 is shown. 
 
The processing thus far yields hundreds of visibility scans, each of which is next inspected for 
its maximum deviation from zero. Those deviations are then the estimates of fringe visibility. 
The visibility estimates provided by a 10-minute scan are inspected in histogram form, keeping 
odd and even numbered estimates separate in case there are systematic differences resulting 
from differences in the forward and backward throw of the dither mirror. (The properties of the 
dither mirror are currently being measured using a laser interferometer.) The histograms then 
provide final estimates of the visibility, still uncalibrated against a star of known visibility. In 
the 17 datasets involving υ Andromedae described below, The variation between backward 
and forward throws of the dither mirror, resulting in even and odd numbered scans, showed a 
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mean value of -0.6 +/- 3.6 %. Thus, we will not further discriminate in this analysis between 
scans of opposite directions. An example histogram is shown in Figure 10. 
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Fig 10.  A histogram of visibilities resulting from 658 scans is shown. 
 

The example dataset was selected because it contains a gap of about 1.5 minutes in the 10-
minute series in which fringes are lost, presumably due to a drift of the zero path location 
beyond the range of the dither mirror. This is not a typical situation, but illustrates a problem 
that arises in attempts to discard scans considered to be bad. The algorithm developed here will 
still locate the highest intensity peak in the expected region of the power spectrum containing a 
fringe and will produce a “false” fringe from which it measures a visibility. Those false fringes 
are invariably of low amplitude, hence the large bump at the low visibility end of Figure 10. 
The individual visibility measurements are plotted in Figure 11 in which the false fringes are 
clearly seen. The two values with zero visibility, located just after k = 350 in Figure 11, are the 
result of an adjustable signal-to-noise evaluator that sets V to zero for fringes whose 
amplitudes are less than some multiple of the rms fluctuations in the background (measured 
away from the fringe packet). In this case, the criterion was set to a SNR of 1. Figures 12 and 
13 show the result of increasing the threshold to 3 and then to 7, at which point the middle 
region of these data containing false fringes is well captured but other random real fringes of 
low SNR are also eliminated.  
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Fig 11.  658 visibilities during a 10-minute sequence, with fringe loss midway through the sequence, are shown. 
The blue line is the mean visibility measured after the dropouts have been ignored. 
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Fig 12.  Setting a signal-to-noise threshold of 3 captures many, but not all, of the spurious fringe detections. 
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Fig 13.  A SNR  threshold of 7 captures most of the dropouts but also depletes low SNR fringes randomly. 

 
Another way to visualize these data is shown in Figure 14 in which 1-minute averages of 
visibility are displayed with error bars representing the rms deviations from the mean. The 
region of fringe loss clearly stands out in the two subsets of low visibility. The line through the 
points represents the average of the other 1-minute series after the two obviously flawed time 
segments have been “switched” off. These one-minute averages are useful in detecting possible 
high time-frequency visibility variations that would arise from a “wide” stellar companion 
scanned by the changing baseline projection during a 10-minute observing sequence that 
would otherwise be lost in lumping the data into a single measurement. 
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Fig 14.  One-minute subsets of the data from Fig. 11 are shown. 
 

The use of a thresholding criterion in an attempt to deselect “false” fringes is clearly 
dangerous. For the data set displayed here, increasing the threshold to a SNR of 3 does indeed 
catch most of the dropouts during the fifth and sixth minutes, but it also will randomly deselect 
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real fringes whose amplitudes are low because of the statistical nature of the actual fringe 
distribution. By eliminating those fringes from the mean value, a bias towards higher visibility 
will result. And, because one cannot be assured that the de-selection will be applied to the 
same fractional parts of the distributions for the program and calibrator stars, the calibration 
process will not eliminate this bias. It is therefore appropriate to correct for lost fringes by 
deleting blocks of data from the analysis rather than attempt to locate false fringes with an 
unsophisticated statistical argument. 
 
Determining the mean visibility can be viewed as a process of centroiding on a histogram. The 
mean values of V for 1-minute integrations shown in Figure 12 have error bars that might be 
regarded as the half-widths of the histograms of each integration. The variations of these 
means from their overall mean value, shown as the horizontal line in Figure 12, are indicative 
of the precisions of the fits and are used here as the estimator of the error of the raw visibility 
determination. For the example used here, the data set yields V = 0.183 +/- 0.008. 
 
The Mathcad routine described by this report is available from the author. The reduction of a 
10-minute data set requires about 45 seconds on a 500 MHz pc with 512Mb of RAM. About 
half that time is involved in reading in the input data file, typically 25 Mb in size. 
 
 
3.   APPLICATION TO UPSILON ANDROMEDAE 
 
There remains the possibility that the sample of extrasolar planetary systems discovered to date 
is contaminated by face-on binary star systems which yield planetary masses for the secondary 
when an actual sini of nearly zero is assumed to be near unity. Long-baseline interferometry 
provides new resolution leverage that can cull the sample of face-on binaries. One simple 
means for examining these stars is to let the baseline scan the object during the course of a 
night during which time the visibility will vary due to changing baseline projection. This 
technique was applied by Boden et al. (1998) to 51 Pegasi for which they found no evidence 
for a stellar companion. 
 
The star υ Andromedae (HR 458 = HD 9826, α = 01 36 47.8, δ = +41 24 20, V = +4.09, Sp. 
Type = F8V, π = 74.3+/- 0.7 mas) is accompanied by three extrasolar planets having periods of 
4.6, 242 and 1269 days (Butler et al. 1999, Stepinski et al. 2000). Abt (1976) reported a 
companion with a period of 198 days, a result that is now generally regarded as spurious. Two 
wide companions are listed in the Washington Double Star catalog, but they are regarded as 
being optical rather than physical in nature. 
 
As a pilot for a more extensive forthcoming survey of accessible extrasolar planetary systems, 
we observed υ And on the night of 6 Nov 2001 interlaced between observations of a calibrator 
star HR 409 (HD 8671, α = 01 26 18.54, δ = +43 27 28, V = +5.96, Sp. Type = F7V, π = 24.2 

+/- 0.7 mas), 2.8o from υ And. The results of those observations are presented in Table 1. 
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     Table 1. Observations of υ And and Calibrator

Object Ubeg Vbeg Rbeg θbeg Uend Vend Rend θend LST Alt Vraw σVraw Vcal σVcal

HR 409 -58.73 324.79 330.06 -10.25 -66.43 323.19 329.95 -11.61 -0.03 70.6 0.242 0.011  -  -
υ And 173.54 273.24 323.69 32.42 168.00 277.92 324.75 31.15 0.42 74.2 0.106 0.009 0.497 0.054

HR 409 -92.11 316.24 329.38 -16.24 -97.98 314.27 329.19 -17.32 1.09 79.9 0.171 0.015  -  -
υ And 136.16 298.86 328.42 24.49 129.13 302.46 328.87 23.12 1.37 82.3 0.071 0.006 0.457 0.052

HR 409 182.43 261.84 319.13 34.87 177.37 267.03 320.56 33.59 1.67 80.4 0.139 0.009  -  -
υ And 107.37 311.85 329.82 19.00 99.47 314.68 330.03 17.54 1.99 81.6 0.066 0.005 0.409 0.042

HR 409 140.82 292.64 324.76 25.70 134.08 298.43 327.17 24.19 2.21 77.1 0.177 0.012  -  -
υ And 81.86 320.05 330.35 14.35 73.29 322.22 330.45 12.81 2.49 77.4 0.089 0.008 0.446 0.048

HR 409 114.38 307.93 328.49 20.38 107.06 310.91 328.83 19.00 2.74 72.3 0.220 0.011  -  -
υ And 47.00 327.25 330.61 8.17 38.94 328.33 330.63 6.76 3.13 70.7 0.064 0.003 0.340 0.024

HR 409 87.29 317.74 329.52 15.36 77.85 320.42 329.74 13.66 3.47 64.7 0.161 0.009  -  -
υ And 12.96 330.41 330.66 2.25 4.45 330.63 330.66 0.77 3.74 64.0 0.070 0.004 0.460 0.035

HR 409 59.11 324.71 330.05 10.32 51.06 326.17 330.14 8.90 4.10 ~55 0.140 0.006  -  -
υ And -26.60 329.58 330.65 -4.61 -35.02 328.78 330.64 -6.08 4.44 56.1 0.055 0.003 0.366 0.029

HR 409 18.35 329.83 330.34 3.18 10.32 330.19 330.36 1.79 4.84 49.9 0.163 0.012  -  -
υ And -63.92 324.29 330.53 -11.15 -71.21 322.71 330.47 -12.44 5.11 48.6 0.061 0.004 0.333 0.033

HR 409 -21.29 329.64 330.33 -3.70 -21.29 329.64 330.33 -3.70 5.47 43.1 0.210 0.017  -  -

 
 

The (U,V) values are given in terms of the projected baseline lengths at the beginning and end 
of each of the 10-minute observation sets and were calculated from a Mathcad program 
developed for CHARA by Anders Jerkstrand. The projected baseline lengths R and position 
angles θ are also given along with the local sidereal time at the beginning of each ten-minute 
observation sequence and the beginning altitude of the star. The observing log for that night 
indicates that transparency was decreasing during the last third of the pointings. The zenith 
distance was also beginning to be significant. These effects clearly show themselves in the 
average intensity levels of the data, which dropped by a factor of two from start to finish. 
 
Figure 15 presents the raw and calibrated visibilities for υ And and its reference star. Clearly, 
the photosphere of υ And is more resolved than that of HR 409. The calibrated values for 
υ And were determined by linear interpolation of reference visibilities, shown as diamonds 
without error bars in the middle curve. Conditions were changing significantly during the 
course of this night, and there is no guarantee that a linear interpolation is very meaningful. 
Furthermore, it should be pointed out that the one-minute samplings within each ten-minute 
dataset are quite steady and show no significant slopes. This leads to the troubling conclusion 
that the large variation in raw visibility is instrumental in nature. The two raw visibility curves 
in Figure 1 track each other fairly well, suggesting a continuous change in this effect. It would 
be very worthwhile to spend a part of one night taking short (5 minutes) data sets on the same 
object separated by small slews of the telescopes and delay lines to an offset location and then 
immediately returning to the star. This will shed light on whether the variations we see here in 
the raw visibility of the calibrator star are continuous and amenable to linear interpolation. 
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Fig 15.  Raw and calibrated visibilities for υ And and HR 409 are shown above. 
 

 
As mentioned earlier, Theo ten Brummelaar is independently developing a data pipeline based 
upon estimating visibilities from the power spectra of fringes. Figure 16 shows a comparison 
of his results (diamonds) with those produced here from fringe amplitudes (squares). While the 
results are generally in good agreement, especially for the first half of the night, there is a 
systematic offset that is prominent in the second half of the night. These two approaches 
should give identical results, and we will continue to explore the nature of this disagreement. It 
is at least heartening that we are not wildly in disagreement. 
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Fig 16.  A comparison between results from fringe amplitude (blue square) and fringe  
power spectra (red diamonds) is shown above. 

 
 
One can use trigonometric parallaxes and estimated linear diameters, the latter assigned 
according to MV type from Cox (2000), of the two stars to calculate expected visibilities. This 
leads to a value of V = 0.955 for the calibrator and V = 0.65 for υ And. The final calibrated 
visibilities, now adjusted for the expected value of the calibrator, are plotted against projected 
baseline in Figure 17. The solid nearly linear curve is the calculated visibility based upon the 
Hipparcos parallax of 74.25 mas. The dashed curve is the visibility resulting from a parallax 
based upon the spectral type, yielding an angular diameter of 1.18 mas. There is no reason to 
accept the spectroscopic parallax over the trigonometric value, but it turns out that υ And is 
about half a magnitude brighter than expected for its spectral type if the Hipparcos parallax is 
correct. With the uncertainties in our calibration process, no conclusions are reached regarding 
the variations in V with baseline. While this particular night of data does not yet serve the 
purpose of inspecting this extrasolar planetary system for stellar companions, it has been very 
useful in the development of reduction tools and the exploration of calibration procedures. 
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Fig 17.  The calibrated visibilities for υ And are plotted above against projected baseline 

along with two estimates of the anticipated visibility. 
 

Finally, if we regard the spread in the data as being representative of the error of the 
measurements, then we can fit uniform disk visibility curves to these data to derive a value for 
the angular diameter of  υ And.   Such a graphical fit is shown in Figure 18 for which the mean 
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Fig 18.  The data for υ And are well represented by a diameter of 1.1+/-0.1 mas 
angular diameter is 1.1 +/- 0.1 mas. If this result is accurate, then υ And is about 35% larger 
than expected for a F8V star at the Hipparcos distance. However, this diameter is consistent 
with the spectroscopic parallax for this star. 
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