# ANGULAR DIAMETERS AND EFFECTIVE TEMPERATURES OF 25 K GIANT STARS FROM THE CHARA ARRAY

ELLYN K. BAINES<sup>1,6</sup>, MICHAELA P. DÖLLINGER<sup>2</sup>, FELICE CUSANO<sup>3</sup>, EIKE W. GUENTHER<sup>3</sup>, ARTIE P. HATZES<sup>3</sup>, HAROLD A. McAlister<sup>4</sup>, Theo A. Ten Brummelaar<sup>4</sup>, Nils H. Turner<sup>4</sup>, Judit Sturmann<sup>4</sup>, Laszlo Sturmann<sup>4</sup>, P. J. Goldfinger<sup>4</sup>, Christopher D. Farrington<sup>4</sup>, and Stephen T. Ridgway<sup>5</sup>

### **ABSTRACT**

Using Georgia State University's Center for High Angular Resolution Astronomy Array interferometer, we measured angular diameters for 25 giant stars, six of which host exoplanets. The combination of these measurements and *Hipparcos* parallaxes produces physical linear radii for the sample. Except for two outliers, our values match angular diameters and physical radii estimated using photometric methods to within the associated errors with the advantage that our uncertainties are significantly lower. We also calculated the effective temperatures for the stars using the newly measured diameters. Our values do not match those derived from spectroscopic observations as well, perhaps due to the inherent properties of the methods used or because of a missing source of extinction in the stellar models that would affect the spectroscopic temperatures.

*Key words:* infrared: stars – planetary systems – stars: fundamental parameters – techniques: interferometric – techniques: spectroscopic

### 1. INTRODUCTION

Giant star radii have been measured in the past using various interferometers, including the Mark III (85 giants and supergiants; Mozurkewich et al. 2003), the Palomar Testbed Interferometer (69 giants and supergiants; van Belle et al. 1999), the Navy Prototype Optical Interferometer (50 giants and supergiants; Nordgren et al. 1999), and the Center for High Angular Resolution Astronomy (CHARA) Array (four Hyades giants; Boyajian et al. 2009). These measurements are valuable because these are the stars populating the coolest, most luminous part of the Hertzsprung–Russell (H–R) diagram (van Belle et al. 1999). What makes the sample of giant stars under consideration here particularly interesting is that they are potential exoplanet hosts, and planetary candidates have been discovered around six of the stars already.

Two important characteristics of a star are its mass and radius. For giant stars, the determination of these parameters is indirect and heavily model dependent. In practice, spectroscopic observations to measure the surface gravities ( $\log g$ ), effective temperatures ( $T_{\rm eff}$ ), and iron abundances ([Fe/H]) can be combined with a distance measurement to derive the stellar radius. Fitting evolutionary tracks to the position of the star in the H–R diagram then yields the mass. The reliability of these measurements depends both on the validity of the model atmospheres and the stellar evolution code. Unfortunately this is an uncertain process because the evolutionary tracks of stars with a wide range of masses all converge to near the same region of the H–R diagram as they evolve up the giant branch. In particular, the

mass estimates derived from evolutionary tracks depend critically on several parameters hidden in the tracks, such as the mixing length parameter and its assumed constancy for all stars, the unknown helium content in the core, and uncertainties about the nature of the convection zone. As a result, using different tracks can produce different masses, and in the absence of good calibrating objects no set of tracks can be claimed to provide the best results. On the other hand, if one can test and calibrate these evolutionary tracks by comparing the theoretically determined mass and radius to observed values, then one can have some faith in applying these tracks to stars for which direct measurements of these stellar parameters are not possible.

A star's mass is not only important for its evolution, but it should play an important role in the type of the planetary system a star will form. There are a number of Doppler surveys searching for planets around evolved giant stars with stellar masses of 1–2  $M_{\odot}$  (e.g., Niedzielski et al. 2009; Döllinger et al. 2007; Setiawan et al. 2005; Sato et al. 2005). All are plagued by the same problem, in that they rely on evolutionary tracks to determine the stellar mass. Until these are calibrated both the mass of the host star and the planet are uncertain.

A more reliable means of calculating the stellar mass independent of evolutionary tracks and model atmospheres is using stellar oscillation observations, as the frequency of stellar oscillations is related to the mean density of the star. If one has an accurate stellar radius it is simple to compute a stellar mass from the oscillation frequencies that is model independent. Depending on the accuracy of the diameter measurements, the masses can be measured to an accuracy of  $\sim 2\%$  (Teixeira et al. 2009) to  $\sim 15\%$  (Hatzes & Zechmeister 2007). There is increasing evidence that most and possibly all giant stars show stellar oscillations (e.g., de Ridder et al. 2006; Frandsen, et al. 2002; Hatzes & Cochran 1994), which are due to p-mode oscillations where

<sup>&</sup>lt;sup>1</sup> Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA; ellyn.baines.ctr@nrl.navy.mil 

<sup>2</sup> ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany; mdoellin@eso.org

<sup>&</sup>lt;sup>3</sup> Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg, Germany; cusano@tls-tautenburg.de, guenther@tls-tautenburg.de, artie@tls-tautenburg.de

<sup>&</sup>lt;sup>6</sup> Some of the observations described here were completed while with the Center for High Angular Resolution Astronomy, Georgia State University, P.O. Box 3969, Atlanta, GA 30302-3969, USA.

 Table 1

 Observed and Spectroscopic Properties of the K Giants

| Target<br>HD | V<br>mag | K<br>mag            | Spec<br>Type | $\pi$ (mas)      | <i>T</i> <sub>eff</sub> ±70 K | log g<br>±0.2 | [Fe/H]<br>±0.5 dex | θ <sub>estimate</sub> (mas) | $R_{ m estimate} \ (R_{\odot})$ | $M_{ m estimate}$ $(M_{\odot})$ |
|--------------|----------|---------------------|--------------|------------------|-------------------------------|---------------|--------------------|-----------------------------|---------------------------------|---------------------------------|
| 32518        | 6.41     | $3.91 \pm 0.04^{a}$ | K1 III       | $8.29 \pm 0.58$  | 4580                          | 2.0           | -0.15              | $0.84 \pm 0.05$             | $10.9 \pm 1.0$                  | $1.1 \pm 0.2$                   |
| 60294        | 5.92     | $3.55 \pm 0.22^{a}$ | K2 III       | $12.24 \pm 0.39$ | 4520                          | 2.4           | +0.02              | $0.97 \pm 0.31$             | $8.5 \pm 2.7$                   | $1.2 \pm 0.1$                   |
| 73108        | 4.60     | $1.92 \pm 0.07^{b}$ | K1 III       | $12.74 \pm 0.26$ | 4415                          | 1.8           | -0.25              | $2.17 \pm 0.22$             | $18.3 \pm 1.9$                  | $1.2 \pm 0.2$                   |
| 102328       | 5.29     | $2.55 \pm 0.06^{b}$ | K3 III       | $15.13 \pm 0.30$ | 4250                          | 1.9           | +0.09              | $1.64 \pm 0.14$             | $11.6 \pm 1.0$                  | $1.1 \pm 0.1$                   |
| 103605       | 5.84     | $3.10 \pm 0.30^{a}$ | K1 III       | $10.54 \pm 0.37$ | 4740                          | 2.8           | -0.07              | $1.27 \pm 0.54$             | $12.9 \pm 5.5$                  | $1.1 \pm 0.2$                   |
| 106574       | 5.71     | $2.94 \pm 0.08^{b}$ | K2 III       | $7.00 \pm 0.28$  | 4570                          | 2.2           | -0.31              | $1.38 \pm 0.16$             | $21.1 \pm 2.6$                  | $1.6 \pm 0.2$                   |
| 113049       | 6.00     | $3.66 \pm 0.31^{a}$ | K0 III       | $6.02 \pm 0.37$  | 4740                          | 2.2           | -0.18              | $0.92 \pm 0.41$             | $16.4 \pm 7.3$                  | $2.2 \pm 0.3$                   |
| 118904       | 5.51     | $2.69 \pm 0.07^{b}$ | K2 III       | $7.93 \pm 0.24$  | 4500                          | 2.2           | -0.18              | $1.55 \pm 0.16$             | $21.1 \pm 2.2$                  | $1.4 \pm 0.2$                   |
| 136726       | 5.01     | $1.92 \pm 0.05^{b}$ | K4 III       | $8.19 \pm 0.19$  | 4340                          | 1.6           | +0.04              | $2.33 \pm 0.17$             | $30.5 \pm 2.4$                  | $2.0 \pm 0.2$                   |
| 137443       | 5.79     | $2.74 \pm 0.06^{b}$ | K4 III       | $8.86 \pm 0.22$  | 4435                          | 2.6           | -0.03              | $1.58 \pm 0.14$             | $19.2 \pm 1.7$                  | $1.4 \pm 0.2$                   |
| 138265       | 5.88     | $2.38 \pm 0.04^{b}$ | K5 III       | $5.11 \pm 0.31$  | 4200                          | 2.4           | -0.07              | $2.02 \pm 0.12$             | $42.5 \pm 3.6$                  | $1.5 \pm 0.2$                   |
| 139357       | 5.97     | $3.41 \pm 0.32^{a}$ | K4 III       | $8.47 \pm 0.30$  | 4700                          | 2.9           | -0.13              | $1.07 \pm 0.49$             | $13.6 \pm 6.2$                  | $1.3 \pm 0.2$                   |
| 150010       | 6.28     | $3.18 \pm 0.38^{a}$ | K2 III       | $6.95 \pm 0.43$  | 4540                          | 2.8           | -0.02              | $1.31 \pm 0.71$             | $20.2 \pm 11.1$                 | $1.4 \pm 0.3$                   |
| 152812       | 6.00     | $2.83 \pm 0.09^{b}$ | K2 III       | $4.97 \pm 0.45$  | 4220                          | 1.4           | -0.42              | $1.55 \pm 0.20$             | $33.5 \pm 5.3$                  | $1.1 \pm 0.1$                   |
| 157681       | 5.67     | $2.19 \pm 0.05^{b}$ | K5 III       | $5.23 \pm 0.27$  | 4400                          | 1.6           | -0.23              | $2.20 \pm 0.16$             | $45.2 \pm 4.1$                  | $1.7 \pm 0.3$                   |
| 160290       | 5.36     | $2.67 \pm 0.07^{b}$ | K1 III       | $9.23 \pm 0.21$  | 4750                          | 2.7           | -0.17              | $1.54 \pm 0.16$             | $17.9 \pm 1.9$                  | $2.0 \pm 0.3$                   |
| 167042       | 5.98     | $3.55 \pm 0.24^{a}$ | K1 III       | $19.91 \pm 0.26$ | 4820                          | 2.9           | -0.08              | $0.98 \pm 0.33$             | $5.3 \pm 1.8$                   | $1.2 \pm 0.1$                   |
| 170693       | 4.83     | $1.95 \pm 0.05^{b}$ | K1.5 III     | $10.36 \pm 0.20$ | 4200                          | 1.0           | -0.46              | $2.21 \pm 0.16$             | $22.9 \pm 1.7$                  | $1.0 \pm 0.1$                   |
| 175823       | 6.22     | $3.57 \pm 0.32^{a}$ | K5 III       | $5.63 \pm 0.28$  | 4500                          | 2.1           | -0.12              | $1.01 \pm 0.46$             | $19.2 \pm 8.7$                  | $1.7 \pm 0.2$                   |
| 176408       | 5.66     | $3.00 \pm 0.27^{a}$ | K1 III       | $11.81 \pm 0.27$ | 4500                          | 2.3           | -0.06              | $1.31 \pm 0.50$             | $12.0 \pm 4.6$                  | $1.1 \pm 0.2$                   |
| 186815       | 6.28     | $4.32 \pm 0.25^{a}$ | K2 III       | $12.86 \pm 0.39$ | 4900                          | 2.5           | -0.32              | $0.63 \pm 0.23$             | $5.3 \pm 1.9$                   | $1.2 \pm 0.1$                   |
| 192781       | 5.79     | $2.33 \pm 0.07^{b}$ | K5 III       | $5.62 \pm 0.23$  | 4210                          | 2.3           | -0.08              | $2.05 \pm 0.21$             | $39.3 \pm 4.3$                  | $1.4 \pm 0.2$                   |
| 195820       | 6.18     | $3.90 \pm 0.22^{a}$ | K0 III       | $8.68 \pm 0.29$  | 4710                          | 2.4           | -0.16              | $0.81 \pm 0.25$             | $10.1 \pm 3.2$                  | $1.0 \pm 0.2$                   |
| 200205       | 5.51     | $2.25 \pm 0.06^{b}$ | K4 III       | $5.30 \pm 0.24$  | 4210                          | 1.6           | -0.28              | $2.06 \pm 0.18$             | $41.7 \pm 4.1$                  | $1.3 \pm 0.2$                   |
| 214868       | 4.48     | $1.41 \pm 0.07^{b}$ | K2 III       | $9.80 \pm 0.26$  | 4440                          | 2.1           | -0.18              | $2.93 \pm 0.30$             | $32.1 \pm 3.4$                  | $1.8\pm0.2$                     |

Notes. V magnitudes are from Mermilliod (1991) and spectral types are from the SIMBAD Astronomical Database; parallaxes ( $\pi$ ) are from van Leeuwen (2007a, 2007b);  $T_{\rm eff}$ , log g, [Fe/H] are from Döllinger (2008);  $\theta_{\rm estimate}$  and  $R_{\rm estimate}$  were determined photometrically, and  $M_{\rm estimate}$  is from the PARAM Stellar Model (da Silva et al. 2006).

pressure is the restoring force. Thus, giant stars are an ideal class of objects for deriving fundamental stellar parameters. They are abundant, they have large angular diameters suitable for interferometric measurements, and they exhibit stellar oscillations with radial velocity amplitudes of a few to several tens of m  $s^{-1}$ , which are easily measurable by state-of-the-art techniques. The observed oscillation frequencies constrain the internal structure of the star (Bedding et al. 2006) and interferometry measures the star's size, and the combination leads to the mass of the star. Once stellar isochrones have been refined and calibrated for these evolved stars, they can be used to determine the masses of all planet-hosting giant stars. Because collecting data on the oscillation frequencies requires considerable telescope resources and can only be done for relatively few stars, we first present our results on interferometric measurements on a larger sample of giant stars.

The advantage interferometry provides is the ability to directly measure stellar angular diameters. Once the angular diameters are known for these giant stars, physical radii and effective temperatures can be calculated when combined with other parameters, such as the parallax, bolometric flux, interstellar absorption, and bolometric corrections (BCs). The radii and effective temperatures are important values that characterize the parent star as well as the environment in which the exoplanet resides for those stars hosting planets. Section 2 describes the spectroscopic measurements of  $T_{\rm eff}$  and log g for the sample, Section 3 discusses the interferometric observations, Section 4 explains how the angular diameters, linear radii, and  $T_{\rm eff}$  were

determined, and Section 5 explores the physical implications of the interferometric observations.

## 2. SPECTROSCOPIC OBSERVATIONS

Our sample of K giant stars were obtained from the planet search survey of Döllinger et al. (2007). As part of this program the  $T_{\text{eff}}$  and  $\log g$  were measured, which allowed us to estimate the stellar radii and masses. Table 1 lists the 25 stars observed here, and planets have already been found orbiting HD 73108 (Döllinger et al. 2007), HD 139357 and HD 170693 (Döllinger et al. 2009a), HD 32518 and HD 136726 (Döllinger et al. 2009b), and HD 167042 (Johnson et al. 2008; Sato et al. 2008; M. P. Döllinger et al. 2010a, in preparation). Three additional stars show long-period variations in their radial velocity measurements: HD 106574, HD 157681, and HD 200205 (M. P. Döllinger et al. 2010b, in preparation). The targets chosen for our observing list are bright (V < 6.5) giant stars that showed significant short-term variability indicative of stellar pulsations, which made them excellent candidates for both stellar oscillation observations and interferometric measurements.

The spectroscopic observations were carried out using the Coudé Échelle spectrograph of the 2 m Alfred Jensch telescope of the Thüringer Landessternwarte Tautenburg. The spectrograph has a resolving power of  $\Delta\lambda/\lambda=67,000$  and the wavelength range used was 4700-7400 Å. Standard IRAF routines were used for subtracting the bias offset, flat-fielding,

<sup>&</sup>lt;sup>a</sup> 2MASS All-Sky Catalog of Point Sources (Cutri et al. 2003).

<sup>&</sup>lt;sup>b</sup> Two-Micron Sky Survey (Neugebauer & Leighton 1969).

 Table 2

 Observing Log and Calibrator Stars' Basic Parameters

|              |                  | Observing Log                       |              |     | Calibrator Information    |                                        |                                           |  |  |
|--------------|------------------|-------------------------------------|--------------|-----|---------------------------|----------------------------------------|-------------------------------------------|--|--|
| Target<br>HD | Calibrator<br>HD | Baseline <sup>a</sup> (max. length) | Date<br>(UT) | Obs | $T_{\rm eff}^{\rm b}$ (K) | $\log g^{\rm b}$ $({\rm cm \ s}^{-2})$ | $\theta_{\mathrm{LD}}^{\mathrm{c}}$ (mas) |  |  |
| 32518        | 31675            | S1-E1 (331 m)                       | 2007 Nov 14  | 9   | 6310                      | 4.39                                   | $0.401 \pm 0.015$                         |  |  |
| 60294        | 63332            | S1-E1 (331 m)                       | 2009 Apr 23  | 5   | 6310                      | 4.19                                   | $0.431 \pm 0.014$                         |  |  |
|              | 69548            |                                     | •            | 5   | 6761                      | 4.31                                   | $0.402 \pm 0.018$                         |  |  |
| 73108        | 69548            | E2-W2 (156 m)                       | 2008 May 9   | 5   | 6761                      | 4.31                                   | $0.402 \pm 0.018$                         |  |  |
| 102328       | 98673            | S1-E1 (331 m)                       | 2009 Apr 24  | 3   | 8128                      | 4.21                                   | $0.220 \pm 0.010$                         |  |  |
|              | 108954           |                                     | _            | 2   | 6026                      | 4.34                                   | $0.452 \pm 0.021$                         |  |  |
| 103605       | 108954           | S1-E1 (331 m)                       | 2009 Apr 22  | 4   | 6026                      | 4.34                                   | $0.452 \pm 0.021$                         |  |  |
|              | 98673            |                                     | 2009 Apr 24  | 3   | 8128                      | 4.21                                   | $0.220 \pm 0.010$                         |  |  |
|              | 108954           |                                     | •            | 3   | 6026                      | 4.34                                   | $0.452 \pm 0.021$                         |  |  |
| 106574       | 107193           | E2-W2 (156 m)                       | 2008 Jun 29  | 6   | 8710                      | 3.93                                   | $0.315 \pm 0.030$                         |  |  |
| 113049       | 107193           | S1-E1 (331 m)                       | 2009 Apr 23  | 8   | 8710                      | 3.93                                   | $0.315 \pm 0.030$                         |  |  |
|              | 124063           |                                     |              | 5   | 7740                      | 4.29                                   | $0.232 \pm 0.010$                         |  |  |
| 118904       | 124063           | E2-W2 (156 m)                       | 2008 Jun 29  | 6   | 7740                      | 4.29                                   | $0.232 \pm 0.010$                         |  |  |
| 136726       | 145454           | E2-W2 (156 m)                       | 2008 May 9   | 6   | 9772                      | 4.13                                   | $0.268 \pm 0.015$                         |  |  |
| 137443       | 145454           | E2-W2 (156 m)                       | 2008 May 9   | 6   | 9772                      | 4.13                                   | $0.268 \pm 0.015$                         |  |  |
| 138265       | 145454           | E2-W2 (156 m)                       | 2008 May 9   | 4   | 9772                      | 4.13                                   | $0.268 \pm 0.015$                         |  |  |
|              |                  |                                     | 2008 May 11  | 3   |                           |                                        |                                           |  |  |
| 139357       | 132254           | S1-E1 (331 m)                       | 2007 Sep 14  | 4   | 6310                      | 4.27                                   | $0.521 \pm 0.015$                         |  |  |
|              |                  |                                     | 2007 Sep 15  | 3   |                           |                                        |                                           |  |  |
| 150010       | 145454           | E2-W2 (156 m)                       | 2008 Jun 29  | 6   | 9772                      | 4.13                                   | $0.268 \pm 0.015$                         |  |  |
|              | 149681           | S1-E1 (331 m)                       | 2008 Jul 17  | 4   | 7586                      | 4.23                                   | $0.368 \pm 0.012$                         |  |  |
| 152812       | 149303           | S1-E1 (331 m)                       | 2009 Apr 20  | 4   | 8511                      | 4.10                                   | $0.288 \pm 0.011$                         |  |  |
|              | 151044           |                                     |              | 5   | 6166                      | 4.38                                   | $0.380 \pm 0.008$                         |  |  |
| 157681       | 158460           | S1-E1 (331 m)                       | 2007 Sep 14  | 5   | 9000                      | 4.19                                   | $0.268 \pm 0.016$                         |  |  |
| 160290       | 158414           | S1-E1 (331 m)                       | 2009 Apr 24  | 6   | 8000                      | 4.24                                   | $0.295 \pm 0.012$                         |  |  |
|              | 161693           |                                     |              | 4   | 9000                      | 4.19                                   | $0.258 \pm 0.015$                         |  |  |
| 167042       | 161693           | S1-E1 (331 m)                       | 2007 Sep 15  | 8   | 9000                      | 4.19                                   | $0.258 \pm 0.015$                         |  |  |
| 170693       | 172569           | W1-S2 (249 m)                       | 2007 Sep 3   | 4   | 7413                      | 3.98                                   | $0.309 \pm 0.013$                         |  |  |
| 175823       | 172728           | S1-E1 (331 m)                       | 2009 Apr 23  | 4   | 9790                      | 4.14                                   | $0.236 \pm 0.020$                         |  |  |
|              | 178207           |                                     |              | 6   | 9790                      | 4.14                                   | $0.271 \pm 0.015$                         |  |  |
| 176408       | 172728           | S1-E1 (331 m)                       | 2009 Apr 23  | 4   | 9790                      | 4.14                                   | $0.236 \pm 0.020$                         |  |  |
|              | 178207           |                                     |              | 6   | 9790                      | 4.14                                   | $0.271 \pm 0.015$                         |  |  |
| 186815       | 186760           | S1-E1 (331 m)                       | 2009 Apr 24  | 7   | 6026                      | 3.90                                   | $0.432 \pm 0.019$                         |  |  |
|              | 188793           |                                     |              | 9   | 8800                      | 4.21                                   | $0.226 \pm 0.016$                         |  |  |
| 192781       | 186760           | S1-E1 (331 m)                       | 2009 Apr 24  | 7   | 6026                      | 3.90                                   | $0.432 \pm 0.019$                         |  |  |
|              | 188793           |                                     |              | 9   | 8800                      | 4.21                                   | $0.226 \pm 0.016$                         |  |  |
| 195820       | 184960           | S1-E1 (331 m)                       | 2007 Nov 14  | 4   | 6457                      | 4.33                                   | $0.492 \pm 0.019$                         |  |  |
| 200205       | 197950           | W1-S2 (249 m)                       | 2007 Sep 3   | 8   | 7762                      | 4.30                                   | $0.349 \pm 0.014$                         |  |  |
| 214868       | 211211           | E2-W2 (156 m)                       | 2008 Jun 29  | 4   | 9333                      | 4.17                                   | $0.249 \pm 0.015$                         |  |  |
|              |                  | S1-E1 (331 m)                       | 2008 Jul 1   | 3   |                           |                                        |                                           |  |  |

## Notes.

subtracting the scattered light, extracting the spectra, and for the wavelength calibration.  $^{7}$ 

In order to determine the stellar parameters from the spectra, a grid of model atmospheres from Gustafsson et al. (1975) was used in which a plane-parallel atmosphere in local thermodynamic equilibrium was assumed. We selected 144 unblended Fe I

and eight Fe II lines in the wavelength range 5806 and 6858 Å using the line list of Pasquini et al. (2004). The iron abundance [Fe/H] was determined by assuming that Fe I lines of different equivalent widths have to give the same relative abundance of iron. For the effective temperature, an excitation equilibrium of Fe I and Fe II for lines of different excitation potentials was used, and the surface gravity was determined from the ionization balance of Fe I to Fe II lines (Döllinger 2008). The resulting [Fe/H],  $T_{\rm eff}$ , and log g values are listed in Table 1.

<sup>&</sup>lt;sup>a</sup> The three arms of the array are denoted by their cardinal directions: "S" is south, "E" is east, and "W" is west. Each arm bears two telescopes, numbered "1" for the telescope farthest from the beam combining laboratory and "2" for the telescope closer to the lab. <sup>b</sup> All  $T_{\rm eff}$  and log g values are from Allende Prieto & Lambert (1999) except for HD 124063, HD 158414, HD 158460, HD 161693, HD 172728, HD 178207, and HD 188793, which are from Cox (2000) and were based on their spectral types as listed in the SIMBAD Astronomical Database.

<sup>&</sup>lt;sup>c</sup> In calculating  $\theta_{LD}$  as described in Section 3, the *UBV* values were from Mermilliod (1991) except for HD 149303 (ESA 1997), and HD 151044 and HD 184960 (Morel & Magnenat 1978); all *RI* values were from Monet et al. (2003) except for HD 151044 and HD 184960 (Morel & Magnenat 1978); and all *JHK* values were from Cutri et al. (2003).

<sup>&</sup>lt;sup>7</sup> IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

Table 3
K Giants' Calibrated Visibilities

Table 3 (Continued)

| 1958   1967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Target<br>HD | Calibrator<br>HD | MJD       | <i>B</i> (m) | Θ<br>(deg) | $V_c$ | $\sigma V_c$ | Target<br>HD | Calibrator<br>HD | MJD       | <i>B</i> (m) | Θ<br>(deg) | $V_c$ | $\sigma V_c$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|-----------|--------------|------------|-------|--------------|--------------|------------------|-----------|--------------|------------|-------|--------------|
| 1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481-20   1481   |              |                  | 54418 238 |              |            | 0.755 | 0.067        | пр           | пр               | 54505 207 |              |            | 0.425 | 0.045        |
| 14   14   15   15   16   16   16   16   16   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32316        | 31073            |           |              |            |       |              |              |                  |           |              |            |       |              |
| 14   14   15   15   16   16   16   16   16   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |           |              |            |       |              |              |                  |           |              |            |       |              |
| 14   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  |           |              |            | 0.843 |              |              |                  |           |              |            |       | 0.062        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  | 54418.261 | 241.66       | 206.9      | 0.751 | 0.061        |              |                  |           |              | 206.5      |       | 0.053        |
| 1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481   1481      |              |                  |           |              |            |       |              | 137443       | 145454           |           | 155.65       | 219.1      | 0.673 | 0.082        |
| 6418-286   5418-286   5418-286   5418-286   5418-286   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416   5419-416    |              |                  |           |              |            |       |              |              |                  |           |              |            | 0.631 | 0.083        |
| 69/2014         69/3124         69/3441 (3)         89.9         9.9         0.944         0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                  |           |              |            |       |              |              |                  |           |              |            |       |              |
| 14   14   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60204        | 62222            |           |              |            |       |              |              |                  |           |              |            |       |              |
| 1840   1841   1842   1848   1842   1844   1845   1845   1854   1855   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858   1858      | 00294        | 03332            |           |              |            |       |              |              |                  |           |              |            |       |              |
| 1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101   1494-101    |              |                  |           |              |            |       |              | 129265       | 145454           |           |              |            |       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |           |              |            |       |              | 136203       | 143434           |           |              |            |       |              |
| 14   14   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  |           |              |            |       |              |              |                  |           |              |            |       |              |
| 14   14   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 69548            | 54944.160 |              | 91.0       | 0.526 |              |              |                  |           |              |            |       | 0.070        |
| 744 (20)         318.44         100.8         0.505         0.502         5.944.00         155.16         224.4         0.489         0.050           73108         65948         5495.216         155.59         254.7         0.411         0.051         139357         132254         54357.163         320.75         102.8         0.400         0.045           73108         6595.226         155.85         254.7         0.411         0.043         0.033         54357.161         319.12         101.0         0.040         0.043           4595.227         155.77         268.4         0.450         0.057         268.2         0.435         0.057         34358.157         319.17         10.03         0.400         0.000           102228         9867         5495.257         135.77         268.4         0.480         0.011         5495.261         319.17         0.015         0.000         34358.157         310.0         0.015         0.000         34358.163         319.17         0.057         0.029         0.002         34366.323         310.0         0.029         0.004         0.002         34366.323         0.003         0.003         0.002         34366.323         0.003         0.002         34366.323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  | 54944.168 | 319.64       | 92.9       | 0.448 | 0.057        |              |                  | 54597.467 | 155.50       | 246.2      | 0.559 | 0.079        |
| 73108         69548         54945208         317.93         102.7         0.455         0.053         139357         132254         54357.163         320.14         104.2         0.040         0.007           73108         69548         54395.226         155.88         28.0         0.446         0.034         -         54357.161         319.6         105.6         0.467         0.030           4595.244         155.80         261.1         0.406         0.0037         -         54358.157         319.21         107.0         0.401         0.006           102328         98673         54395.257         3146.3         225.0         0.088         0.009         15001         145455         54358.157         31.03         0.415         0.049           10232         98673         5495.259         314.03         228.0         0.088         0.009         150010         145455         5466.318         15.39         26.1         0.035         0.122           10232         91.0         0.010         0.012         -         5466.338         15.30         26.1         0.035         0.122           10345         91.0         0.437         0.027         -         5466.338         15.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                  |           |              |            |       |              |              |                  | 54597.477 | 155.33       | 249.3      | 0.500 | 0.061        |
| 73108         69548         54595_216         155.95         2547         0.411         0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  |           |              |            |       |              |              |                  |           |              |            |       | 0.061        |
| 1498         54995.226         155.88         258.0         0.446         0.034         54357.161         319.02         105.0         0.047         0.003           1493         224         155.80         264.1         0.460         0.037         54358.151         319.24         103.9         0.040         0.030           102328         98673         5495.239         314.63         282.0         0.080         0.011         145454         5405.181         319.27         105.7         0.429         0.040           102328         98673         54945.239         314.63         248.9         0.00         0.012         5405.6318         154.04         22.10         0.033         0.11           10805         54945.239         314.63         248.9         0.00         0.012         54646.335         154.84         22.10         0.83         0.11           10305         9495         54943.337         314.63         243.9         0.00         0.02         54646.335         154.85         23.1         0.83         0.11           10305         9495.239         314.63         124.9         0.02         0.02         5464.634         155.07         232.1         0.83         0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>52400</b> | 60.7.10          |           |              |            |       |              | 139357       | 132254           |           |              |            |       |              |
| 102328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /3108        | 69548            |           |              |            |       |              |              |                  |           |              |            |       |              |
| 1808   1808   1808   1808   1808   1808   1808   1808   1808   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809   1809      |              |                  |           |              |            |       |              |              |                  |           |              |            |       |              |
| 102228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                  |           |              |            |       |              |              |                  |           |              |            |       |              |
| 102328   98673   54945.299   314.63   248.9   0.086   0.011   5.0100   145454   54646.318   151.90   10.27   0.0.7   0.4.29   0.012   0.012   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0102   5.0   |              |                  |           |              |            |       |              |              |                  |           |              |            |       |              |
| 108954   54945.252   316.18   252.0   0.088   0.009   150010   145454   54646.318   154.39   226.3   0.785   0.125     108954   54945.293   314.63   248.9   0.100   0.012   54646.335   154.85   231.9   0.832   0.085     108954   54945.294   317.31   254.8   0.095   0.012   54646.335   155.07   235.1   0.835   0.113     103605   108954   54943.375   317.53   99.1   0.437   0.027   54646.335   155.07   235.1   0.835   0.113     54943.388   317.18   100.6   0.442   0.032   54646.336   155.07   235.1   0.822   0.083     54943.384   316.37   103.5   0.409   0.029   54664.305   54664.302   273.81   117.3   0.822   0.083     54943.394   316.37   103.5   0.409   0.029   54664.303   54664.403   270.01   120.2   0.589   0.086     54945.280   316.51   256.9   0.446   0.062   152812   149303   54941.409   327.27   256.0   0.152   0.014     108954   54945.280   316.51   256.9   0.446   0.062   152812   149303   54941.409   327.27   256.0   0.152   0.014     108954   54945.280   316.51   256.9   0.446   0.062   152812   149303   54941.409   327.27   256.0   0.152   0.014     108954   54945.280   316.51   256.9   0.449   0.069   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099   0.099      | 102328       | 98673            |           |              |            |       |              |              |                  |           |              |            |       |              |
| 10895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  |           |              |            |       |              | 150010       | 145454           |           |              |            |       |              |
| 108954   54945.229   314.63   248.9   0.100   0.1012   54646.335   154.85   231.9   0.823   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825   0.825      |              |                  | 54945.290 | 319.04       | 261.0      | 0.073 | 0.011        |              |                  |           |              |            |       |              |
| 108954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 108954           | 54945.239 | 314.63       | 248.9      | 0.100 | 0.012        |              |                  |           |              |            |       | 0.085        |
| 1895   1895   1894   1892   1894   1892   1894   1892   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894   1894      |              |                  |           |              |            |       |              |              |                  | 54646.345 | 155.07       | 235.1      | 0.835 | 0.113        |
| \$4943.388   316.77   102.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103605       | 108954           |           |              |            |       |              |              |                  |           |              |            |       | 0.125        |
| 1895   54943,394   316.37   103.5   0.409   0.029   54664.433   272.04   120.2   0.589   0.096     54945,242   312.54   248.0   0.445   0.048   54664.433   270.21   123.0   0.640   0.080     54945,2580   316.51   256.9   0.446   0.062   152812   149303   54941.490   327.27   256.0   0.152   0.014     108954   54945,267   315.40   253.8   0.465   0.069   0.054   54941.490   327.27   256.0   0.152   0.014     54945,280   316.51   256.9   0.489   0.054   54941.697   327.94   259.9   0.164   0.015     54945,280   316.51   256.9   0.489   0.054   54941.507   327.94   259.9   0.154   0.010     54945,280   316.51   256.9   0.489   0.054   54941.507   327.94   259.9   0.154   0.010     54945,280   317.37   260.2   0.449   0.044   54941.516   328.18   261.9   0.148   0.015     54646,187   155.91   241.7   0.699   0.099   15104   54941.481   326.75   253.8   0.158   0.017     54646,196   155.99   244.8   0.698   0.131   54941.490   327.27   256.0   0.154   0.016     54646,214   156.11   250.8   0.680   0.086   54941.90   327.63   257.9   0.168   0.015     54646,223   156.14   253.9   0.732   0.085   54941.507   327.94   259.9   0.157   0.011     54646,223   156.14   253.9   0.732   0.085   54941.507   327.94   259.9   0.157   0.011     54646,223   156.14   253.9   0.050   0.086   54941.516   328.18   261.9   0.154   0.016     54944,370   272.37   267.4   0.630   0.051   54954.513   320.64   104.8   0.057   0.005     54944,370   272.37   267.4   0.630   0.051   54954.513   320.64   104.8   0.057   0.005     54944,370   272.37   267.4   0.630   0.051   54954.533   259.5   319.8   309.4   0.006   0.004     54944,370   272.17   267.4   0.587   0.009   0.052   0.007   54954.536   292.52   223.8   0.250   0.003     54944,411   271.80   99.0   0.633   0.076   0.052   0.054   54945.356   292.52   223.8   0.250   0.035     54944,411   271.80   99.0   0.633   0.076   0.052   0.054   0.054   0.054   0.054   0.054   0.054   0.054   0.054   0.054   0.054   0.054   0.054   0.054   0.054   0.054   0.054   0.054   0.054   0.054   0.05   |              |                  |           |              |            |       |              |              |                  |           |              |            |       |              |
| \$\begin{small}                                                                                                                                                                                                                                                                                                                                   \qqq                \q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                  |           |              |            |       |              |              | 149681           |           |              |            |       |              |
| 10895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 98673            |           |              |            |       |              |              |                  |           |              |            |       |              |
| 108954   54945.280   316.51   256.9   0.446   0.062   152812   149303   54941.490   327.27   256.0   0.152   0.014     108954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 70073            |           |              |            |       |              |              |                  |           |              |            |       |              |
| 108954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                  |           |              |            |       |              | 152812       | 149303           |           |              |            |       |              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 108954           |           |              |            |       |              | 102012       | 1.7505           |           |              |            |       |              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                  | 54945.280 | 316.51       | 256.9      | 0.489 | 0.054        |              |                  |           |              |            |       | 0.010        |
| 54646.196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                  |           |              |            |       |              |              |                  | 54941.516 | 328.18       | 261.9      | 0.148 | 0.015        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106574       | 107193           |           |              |            |       |              |              | 151044           | 54941.481 |              |            | 0.158 | 0.017        |
| 113049   107193   54646.234   156.11   250.8   0.680   0.086   54941.507   327.94   259.9   0.157   0.011     113049   107193   54944.362   272.32   265.1   0.655   0.059   54941.516   328.18   261.9   0.154   0.016     54944.370   272.47   267.4   0.630   0.051   54357.211   321.92   99.9   0.056   0.004     54944.386   272.53   269.5   0.692   0.070   54357.211   321.92   99.9   0.056   0.004     54944.386   272.53   269.5   0.692   0.070   54357.211   321.92   321.36   102.3   0.055   0.005     54944.394   272.57   267.4   0.630   0.051   54357.231   320.64   104.8   0.057   0.005     54944.394   272.57   94.4   0.687   0.049   0.052   54357.251   318.83   109.4   0.060   0.010     54944.394   272.37   94.4   0.587   0.049   160290   158414   54945.330   279.04   219.2   0.267   0.020     54944.411   271.80   99.0   0.633   0.076   54945.366   292.52   223.8   0.250   0.037     54944.395   272.32   265.1   0.611   0.059   54945.366   292.52   223.8   0.250   0.037     54944.396   272.32   265.1   0.611   0.059   54945.366   292.52   223.8   0.250   0.037     54944.370   272.47   267.4   0.542   0.035   54945.366   292.52   223.8   0.225   0.026     54944.378   272.53   269.5   0.602   0.048   161693   54945.366   292.52   223.8   0.225   0.026     54944.411   271.80   99.0   0.581   0.070   54945.366   292.52   223.8   0.225   0.026     54944.419   271.38   101.3   0.656   0.058   161693   54945.366   296.96   225.7   0.183   0.021     118904   124063   54646.251   155.81   244.4   0.574   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074   0.074    |              |                  |           |              |            |       |              |              |                  |           |              |            |       |              |
| 113049   107193   54646.234   156.18   257.5   0.701   0.081   157681   158460   54941.516   328.18   261.9   0.154   0.016   0.004   0.004   0.005   0.004   0.005   0.004   0.005   0.004   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005   0.005    |              |                  |           |              |            |       |              |              |                  |           |              |            |       |              |
| 113049   107193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |           |              |            |       |              |              |                  |           |              |            |       |              |
| 113049 107193 54944.362 272.32 265.1 0.655 0.059 54357.221 321.36 102.3 0.056 0.005 54944.370 272.47 267.4 0.630 0.051 54944.378 272.53 269.5 0.692 0.070 54357.241 319.83 107.1 0.060 0.004 54944.378 272.53 269.5 0.692 0.070 54357.251 318.83 109.4 0.060 0.004 54944.394 272.37 94.4 0.587 0.049 160290 158414 54945.330 279.04 219.2 0.267 0.020 54944.403 272.12 96.8 0.605 0.049 54944.411 271.80 99.0 0.633 0.076 54944.411 271.80 99.0 0.633 0.076 54944.411 271.80 99.0 0.633 0.076 54944.411 271.80 99.0 0.633 0.076 54944.411 271.80 99.0 0.633 0.076 54944.411 271.80 99.0 0.633 0.076 54944.370 272.47 267.4 0.542 0.055 54944.370 272.47 267.4 0.542 0.055 54944.370 272.47 267.4 0.542 0.055 54944.378 272.53 269.5 0.602 0.048 161693 54945.336 292.52 223.8 0.250 0.026 54944.411 271.80 99.0 0.581 0.070 54945.366 292.52 223.8 0.225 0.026 0.026 54944.411 271.80 99.0 0.581 0.070 54945.366 292.52 223.8 0.225 0.026 118904 124063 54944.411 271.80 99.0 0.581 0.070 54945.366 292.52 223.8 0.225 0.026 118904 124063 54944.411 271.80 99.0 0.581 0.070 54945.366 292.52 223.8 0.225 0.026 118904 124063 54944.411 271.80 99.0 0.581 0.070 54945.366 292.52 223.8 0.225 0.026 118904 124063 54646.251 155.81 244.4 0.574 0.074 54945.356 292.52 223.8 0.225 0.026 118904 124063 54646.261 155.89 247.3 0.567 0.069 167042 161693 54358.232 321.20 97.5 0.584 0.037 54646.268 155.95 250.1 0.589 0.060 54358.243 320.68 100.3 0.507 0.036 54646.288 156.05 256.6 0.583 0.070 54358.243 320.68 100.3 0.507 0.036 54646.288 156.05 256.6 0.583 0.070 54358.243 320.68 100.3 0.507 0.036 54646.288 156.05 256.6 0.583 0.070 54358.245 319.96 103.1 0.571 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  |           |              |            |       |              | 157601       | 159460           |           |              |            |       |              |
| 54944.370         272.47         267.4         0.630         0.051         54357.231         320.64         104.8         0.057         0.005           54944.378         272.53         269.5         0.692         0.070         54357.241         319.83         107.1         0.060         0.004           54944.386         272.50         91.9         0.670         0.052         54357.251         318.83         109.4         0.060         0.010           54944.394         272.37         94.4         0.587         0.049         160290         158414         54945.330         279.04         219.2         0.267         0.020           54944.410         271.38         101.3         0.696         0.071         54945.339         283.87         220.7         0.280         0.030           124063         54944.362         272.32         265.1         0.611         0.059         54945.366         292.52         223.8         0.250         0.037           124063         54944.378         272.53         269.5         0.602         0.048         161693         54945.366         292.52         223.8         0.225         0.025           54944.411         271.80         99.0         0.581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 113049       | 107193           |           |              |            |       |              | 13/061       | 136400           |           |              |            |       |              |
| 189044.378       272.53       269.5       0.692       0.070       54357.241       319.83       107.1       0.060       0.004         54944.386       272.50       91.9       0.670       0.052       54357.251       318.83       109.4       0.060       0.010         54944.394       272.37       94.4       0.587       0.049       160290       158414       54945.330       279.04       219.2       0.267       0.020         54944.403       272.12       96.8       0.605       0.049       54945.330       279.04       219.2       0.267       0.020         54944.411       271.80       99.0       0.633       0.076       54945.348       288.23       222.2       0.247       0.030         54944.370       272.47       267.4       0.542       0.035       54945.366       292.52       223.8       0.250       0.022         54944.378       272.53       269.5       0.602       0.048       161693       54945.375       300.60       227.4       0.172       0.022         54944.411       271.80       99.0       0.581       0.070       54945.376       292.52       223.8       0.228       0.027         54945.376       54944.411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                  |           |              |            |       |              |              |                  |           |              |            |       |              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  | 54944.378 | 272.53       | 269.5      | 0.692 | 0.070        |              |                  |           |              |            |       | 0.004        |
| 54944.403       272.12       96.8       0.605       0.049       54945.339       283.87       220.7       0.280       0.030         54944.411       271.80       99.0       0.633       0.076       54945.338       288.23       222.2       0.247       0.030         54944.419       271.38       101.3       0.696       0.071       54945.356       292.52       223.8       0.250       0.037         124063       54944.362       272.32       265.1       0.611       0.059       54945.356       292.52       223.8       0.250       0.037         54944.370       272.47       267.4       0.542       0.035       54945.356       296.96       225.7       0.217       0.042         54944.411       271.80       99.0       0.581       0.070       54945.356       292.52       223.8       0.228       0.027         54944.419       271.38       101.3       0.656       0.058       54945.356       292.52       223.8       0.228       0.027         118904       124063       54646.251       155.81       244.4       0.574       0.074       54945.356       292.52       223.8       0.227.4       0.167       0.017         54646.268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                  | 54944.386 | 272.50       | 91.9       | 0.670 | 0.052        |              |                  |           |              | 109.4      | 0.060 | 0.010        |
| 124063         54944.411         271.80         99.0         0.633         0.076         54945.348         288.23         222.2         0.247         0.030           124063         54944.362         272.32         265.1         0.611         0.059         54945.366         296.96         225.7         0.217         0.042           54944.370         272.47         267.4         0.542         0.035         54945.375         300.60         227.4         0.172         0.022           54944.378         272.53         269.5         0.602         0.048         161693         54945.348         288.23         222.2         0.225         0.026           54944.411         271.80         99.0         0.581         0.070         54945.366         296.96         225.7         0.172         0.022           54944.419         271.38         101.3         0.656         0.058         54945.366         296.96         225.7         0.183         0.021           118904         124063         54646.251         155.81         244.4         0.574         0.074         54945.375         300.60         227.4         0.167         0.017           54945.375         54666.260         155.89         247.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                  | 54944.394 | 272.37       | 94.4       | 0.587 |              | 160290       | 158414           | 54945.330 | 279.04       | 219.2      | 0.267 | 0.020        |
| 124063         54944.419         271.38         101.3         0.696         0.071         54945.356         292.52         223.8         0.250         0.037           124063         54944.362         272.32         265.1         0.611         0.059         54945.366         296.96         225.7         0.217         0.042           54944.370         272.47         267.4         0.542         0.035         54945.375         300.60         227.4         0.172         0.022           54944.378         272.53         269.5         0.602         0.048         161693         54945.348         288.23         222.2         0.225         0.026           54944.411         271.80         99.0         0.581         0.070         54945.366         296.96         225.7         0.183         0.021           118904         124063         54646.251         155.81         244.4         0.574         0.074         54945.375         300.60         227.4         0.167         0.017           118904         124063         54646.261         155.89         247.3         0.567         0.069         167042         161693         54358.232         321.20         97.5         0.584         0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                  |           |              |            |       |              |              |                  | 54945.339 | 283.87       | 220.7      | 0.280 | 0.030        |
| 124063 54944.362 272.32 265.1 0.611 0.059 54945.366 296.96 225.7 0.217 0.042 54944.370 272.47 267.4 0.542 0.035 54945.375 300.60 227.4 0.172 0.022 54944.378 272.53 269.5 0.602 0.048 161693 54945.348 288.23 222.2 0.225 0.026 54944.411 271.80 99.0 0.581 0.070 54945.366 296.96 225.7 0.183 0.027 54944.419 271.38 101.3 0.656 0.058 54945.366 296.96 225.7 0.183 0.021 118904 124063 54646.251 155.81 244.4 0.574 0.074 54945.375 300.60 227.4 0.167 0.017 54646.260 155.89 247.3 0.567 0.069 167042 161693 54358.232 321.20 97.5 0.584 0.037 54646.268 155.95 250.1 0.589 0.060 54358.238 320.96 99.0 0.551 0.036 54646.278 156.01 253.3 0.512 0.064 54358.243 320.68 100.3 0.507 0.036 54646.288 156.05 256.6 0.583 0.070 54358.249 320.34 101.7 0.524 0.030 54646.297 156.08 259.6 0.562 0.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  |           |              |            |       |              |              |                  |           |              |            |       |              |
| 118904         124063         54944.370         272.47         267.4         0.542         0.035         54945.375         300.60         227.4         0.172         0.022           118904         124063         54944.378         272.53         269.5         0.602         0.048         161693         54945.348         288.23         222.2         0.225         0.026           54944.411         271.80         99.0         0.581         0.070         54945.356         292.52         223.8         0.228         0.027           54944.419         271.38         101.3         0.656         0.058         54945.366         296.96         225.7         0.183         0.021           118904         124063         54646.251         155.81         244.4         0.574         0.074         54945.375         300.60         227.4         0.167         0.017           54646.260         155.89         247.3         0.567         0.069         167042         161693         54358.232         321.20         97.5         0.584         0.037           54646.268         155.95         250.1         0.589         0.060         54358.238         320.96         99.0         0.551         0.036           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 124062           |           |              |            |       |              |              |                  |           |              |            |       |              |
| 118904         124063         54944.378         272.53         269.5         0.602         0.048         161693         54945.348         288.23         222.2         0.225         0.026           54944.411         271.80         99.0         0.581         0.070         54945.356         292.52         223.8         0.228         0.027           54944.419         271.38         101.3         0.656         0.058         54945.366         296.96         225.7         0.183         0.021           118904         124063         54646.251         155.81         244.4         0.574         0.074         54945.375         300.60         227.4         0.167         0.017           54646.260         155.89         247.3         0.567         0.069         167042         161693         54358.232         321.20         97.5         0.584         0.037           54646.268         155.95         250.1         0.589         0.060         54358.238         320.96         99.0         0.551         0.036           54646.278         156.01         253.3         0.512         0.064         54358.243         320.34         101.7         0.524         0.030           54646.288         156.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 124063           |           |              |            |       |              |              |                  |           |              |            |       |              |
| 118904         124063         54944.411         271.80         99.0         0.581         0.070         54945.356         292.52         223.8         0.228         0.027           118904         124063         54646.251         155.81         244.4         0.574         0.074         54945.366         296.96         225.7         0.183         0.021           54646.260         155.89         247.3         0.567         0.069         167042         161693         54358.232         321.20         97.5         0.584         0.037           54646.268         155.95         250.1         0.589         0.060         54358.238         320.96         99.0         0.551         0.036           54646.278         156.01         253.3         0.512         0.064         54358.243         320.68         100.3         0.507         0.036           54646.288         156.05         256.6         0.583         0.070         54358.249         320.34         101.7         0.524         0.030           54646.297         156.08         259.6         0.562         0.088         54358.255         319.96         103.1         0.571         0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                  |           |              |            |       |              |              | 161602           |           |              |            |       |              |
| 118904         124063         54944.419         271.38         101.3         0.656         0.058         54945.366         296.96         225.7         0.183         0.021           118904         124063         54646.251         155.81         244.4         0.574         0.074         54945.375         300.60         227.4         0.167         0.017           54646.260         155.89         247.3         0.567         0.069         167042         161693         54358.232         321.20         97.5         0.584         0.037           54646.268         155.95         250.1         0.589         0.060         54358.238         320.96         99.0         0.551         0.036           54646.278         156.01         253.3         0.512         0.064         54358.243         320.68         100.3         0.507         0.036           54646.288         156.05         256.6         0.583         0.070         54358.249         320.34         101.7         0.524         0.030           54646.297         156.08         259.6         0.562         0.088         54358.255         319.96         103.1         0.571         0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  |           |              |            |       |              |              | 101093           |           |              |            |       |              |
| 118904       124063       54646.251       155.81       244.4       0.574       0.074       54945.375       300.60       227.4       0.167       0.017         54646.260       155.89       247.3       0.567       0.069       167042       161693       54358.232       321.20       97.5       0.584       0.037         54646.268       155.95       250.1       0.589       0.060       54358.238       320.96       99.0       0.551       0.036         54646.278       156.01       253.3       0.512       0.064       54358.243       320.68       100.3       0.507       0.036         54646.288       156.05       256.6       0.583       0.070       54358.249       320.34       101.7       0.524       0.030         54646.297       156.08       259.6       0.562       0.088       54358.255       319.96       103.1       0.571       0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  |           |              |            |       |              |              |                  |           |              |            |       |              |
| 54646.260       155.89       247.3       0.567       0.069       167042       161693       54358.232       321.20       97.5       0.584       0.037         54646.268       155.95       250.1       0.589       0.060       54358.238       320.96       99.0       0.551       0.036         54646.278       156.01       253.3       0.512       0.064       54358.243       320.68       100.3       0.507       0.036         54646.288       156.05       256.6       0.583       0.070       54358.249       320.34       101.7       0.524       0.030         54646.297       156.08       259.6       0.562       0.088       54358.255       319.96       103.1       0.571       0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 118904       | 124063           |           |              |            |       |              |              |                  |           |              |            |       |              |
| 54646.268       155.95       250.1       0.589       0.060       54358.238       320.96       99.0       0.551       0.036         54646.278       156.01       253.3       0.512       0.064       54358.243       320.68       100.3       0.507       0.036         54646.288       156.05       256.6       0.583       0.070       54358.249       320.34       101.7       0.524       0.030         54646.297       156.08       259.6       0.562       0.088       54358.255       319.96       103.1       0.571       0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                  |           |              |            |       |              | 167042       | 161693           |           |              |            |       | 0.037        |
| 54646.278       156.01       253.3       0.512       0.064       54358.243       320.68       100.3       0.507       0.036         54646.288       156.05       256.6       0.583       0.070       54358.249       320.34       101.7       0.524       0.030         54646.297       156.08       259.6       0.562       0.088       54358.255       319.96       103.1       0.571       0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                  | 54646.268 | 155.95       | 250.1      | 0.589 | 0.060        |              |                  |           |              |            |       | 0.036        |
| 54646.297 156.08 259.6 0.562 0.088 54358.255 319.96 103.1 0.571 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  |           |              |            |       |              |              |                  | 54358.243 | 320.68       | 100.3      | 0.507 | 0.036        |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                  |           |              |            |       |              |              |                  | 54358.249 |              | 101.7      | 0.524 | 0.030        |
| - 13D//D - 140404 - 04090 794 - 14/07 - 189 4 - 10407 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 10 | 126726       | 145454           |           |              |            |       |              |              |                  |           |              |            |       | 0.036        |
| 34338.201 319.33 104.3 0.012 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130/26       | 145454           | 54595.294 | 14/.5/       | 189.4      | 0.442 | 0.055        |              |                  | 54358.261 | 319.53       | 104.5      | 0.612 | 0.037        |

Table 3 (Continued)

Table 3 (Continued)

|              |                  |                        | inueu)           |                |                |                |
|--------------|------------------|------------------------|------------------|----------------|----------------|----------------|
| Target<br>HD | Calibrator<br>HD | MJD                    | <i>B</i> (m)     | Θ<br>(dag)     | $V_c$          | $\sigma V_c$   |
|              | ПБ               | 54259 267              | 319.05           | (deg)          | 0.501          | 0.041          |
|              |                  | 54358.267<br>54358.273 | 319.05           | 105.9<br>107.4 | 0.591<br>0.627 | 0.041<br>0.050 |
| 170693       | 172569           | 54346.303              | 187.40           | 183.8          | 0.027          | 0.030          |
| 170075       | 172307           | 54346.311              | 183.87           | 186.6          | 0.343          | 0.042          |
|              |                  | 54346.321              | 179.32           | 190.2          | 0.358          | 0.037          |
|              |                  | 54346.332              | 174.70           | 193.9          | 0.457          | 0.042          |
| 175823       | 172728           | 54944.471              | 297.24           | 232.9          | 0.499          | 0.044          |
|              |                  | 54944.482              | 300.30           | 235.4          | 0.480          | 0.064          |
|              |                  | 54944.493              | 303.23           | 238.1          | 0.553          | 0.065          |
|              |                  | 54944.505              | 305.73           | 240.8          | 0.533          | 0.056          |
|              | 178207           | 54944.442              | 287.69           | 226.5          | 0.633          | 0.071          |
|              |                  | 54944.454              | 291.73           | 229.0          | 0.667          | 0.053          |
|              |                  | 54944.471              | 297.24           | 232.9          | 0.590          | 0.052          |
|              |                  | 54944.482              | 300.30           | 235.4          | 0.576          | 0.082          |
|              |                  | 54944.493<br>54944.505 | 303.23           | 238.1<br>240.8 | 0.569          | 0.060          |
| 176408       | 172728           | 54944.473              | 305.73<br>296.67 | 232.9          | 0.580<br>0.409 | 0.045<br>0.043 |
| 170400       | 172720           | 54944.484              | 299.83           | 235.5          | 0.409          | 0.043          |
|              |                  | 54944.496              | 302.66           | 238.1          | 0.436          | 0.059          |
|              |                  | 54944.507              | 305.17           | 240.8          | 0.416          | 0.046          |
|              | 178207           | 54944.445              | 287.23           | 226.5          | 0.585          | 0.060          |
|              |                  | 54944.456              | 291.14           | 228.9          | 0.587          | 0.055          |
|              |                  | 54944.473              | 296.67           | 232.9          | 0.501          | 0.053          |
|              |                  | 54944.484              | 299.83           | 235.5          | 0.462          | 0.058          |
|              |                  | 54944.496              | 302.66           | 238.1          | 0.452          | 0.057          |
|              |                  | 54944.507              | 305.17           | 240.8          | 0.465          | 0.039          |
| 186815       | 186760           | 54945.396              | 248.69           | 209.6          | 0.792          | 0.082          |
|              |                  | 54945.408              | 256.16           | 212.2          | 0.891          | 0.083          |
|              |                  | 54945.419              | 262.58           | 214.5          | 0.732          | 0.056          |
|              |                  | 54945.429<br>54945.440 | 268.32<br>273.75 | 216.8<br>219.1 | 0.777<br>0.764 | 0.069<br>0.072 |
|              |                  | 54945.484              | 292.08           | 228.8          | 0.704          | 0.072          |
|              |                  | 54945.495              | 295.81           | 231.3          | 0.740          | 0.058          |
|              | 188793           | 54945.396              | 248.69           | 209.6          | 0.749          | 0.098          |
|              |                  | 54945.408              | 256.16           | 212.2          | 0.929          | 0.111          |
|              |                  | 54945.419              | 262.58           | 214.5          | 0.760          | 0.082          |
|              |                  | 54945.429              | 268.32           | 216.8          | 0.699          | 0.075          |
|              |                  | 54945.440              | 273.75           | 219.1          | 0.742          | 0.069          |
|              |                  | 54945.461              | 283.52           | 223.8          | 0.783          | 0.058          |
|              |                  | 54945.473              | 287.96           | 226.3          | 0.778          | 0.040          |
|              |                  | 54945.484              | 292.08           | 228.8          | 0.761          | 0.044          |
| 102701       | 196760           | 54945.495              | 295.81           | 231.3          | 0.726          | 0.057          |
| 192781       | 186760           | 54945.400<br>54945.411 | 231.04<br>238.31 | 202.6<br>205.2 | 0.225<br>0.202 | 0.027<br>0.017 |
|              |                  | 54945.422              | 245.12           | 203.2          | 0.202          | 0.017          |
|              |                  | 54945.432              | 251.29           | 210.4          | 0.174          | 0.012          |
|              |                  | 54945.443              | 257.29           | 212.9          | 0.140          | 0.012          |
|              |                  | 54945.487              | 277.78           | 223.2          | 0.078          | 0.005          |
|              |                  | 54945.498              | 282.14           | 225.9          | 0.062          | 0.004          |
|              | 188793           | 54945.400              | 231.04           | 202.6          | 0.220          | 0.032          |
|              |                  | 54945.411              | 238.31           | 205.2          | 0.214          | 0.024          |
|              |                  | 54945.422              | 245.12           | 207.9          | 0.173          | 0.018          |
|              |                  | 54945.432              | 251.29           | 210.4          | 0.154          | 0.016          |
|              |                  | 54945.443              | 257.29           | 212.9          | 0.143          | 0.012          |
|              |                  | 54945.464              | 268.07           | 218.0          | 0.109          | 0.010          |
|              |                  | 54945.476              | 273.15           | 220.6          | 0.091          | 0.006          |
|              |                  | 54945.487              | 277.78           | 223.2          | 0.074          | 0.004          |
| 195820       | 184960           | 54945.498<br>54418 160 | 282.14           | 225.9          | 0.062          | 0.004          |
| 193020       | 104900           | 54418.169<br>54418.184 | 323.56<br>322.84 | 98.4<br>102.0  | 0.626<br>0.703 | 0.070<br>0.076 |
|              |                  | 54418.194              | 322.84           | 102.0          | 0.703          | 0.076          |
|              |                  | 54418.203              | 321.50           | 104.2          | 0.610          | 0.051          |
| 200205       | 197950           | 54346.350              | 214.19           | 161.4          | 0.327          | 0.032          |
|              |                  | 54346.358              | 211.24           | 163.5          | 0.309          | 0.039          |
|              |                  |                        |                  |                |                |                |

| Target | Calibrator | MJD       | B      | Θ     | $V_c$ | $\sigma V_c$ |
|--------|------------|-----------|--------|-------|-------|--------------|
| HD     | HD         |           | (m)    | (deg) |       |              |
|        |            | 54346.365 | 208.36 | 165.4 | 0.267 | 0.030        |
|        |            | 54346.372 | 205.28 | 167.4 | 0.302 | 0.039        |
|        |            | 54346.378 | 202.26 | 169.3 | 0.338 | 0.033        |
|        |            | 54346.385 | 199.22 | 171.2 | 0.242 | 0.021        |
|        |            | 54346.392 | 195.69 | 173.3 | 0.267 | 0.035        |
|        |            | 54346.406 | 188.87 | 177.4 | 0.318 | 0.031        |
| 214868 | 211211     | 54646.402 | 138.11 | 183.1 | 0.361 | 0.072        |
|        |            | 54646.413 | 141.40 | 185.6 | 0.352 | 0.042        |
|        |            | 54646.423 | 144.26 | 188.0 | 0.326 | 0.054        |
|        |            | 54646.433 | 146.89 | 190.5 | 0.304 | 0.058        |
|        |            | 54648.457 | 322.39 | 239.2 | 0.073 | 0.012        |
|        |            | 54648.469 | 324.32 | 241.8 | 0.064 | 0.005        |
|        |            | 54648.479 | 325.51 | 243.8 | 0.079 | 0.007        |

**Note.** The projected baseline position angle  $(\Theta)$  is calculated to be east of north.

### 3. INTERFEROMETRIC OBSERVATIONS

Interferometric observations were obtained using the CHARA Array, a six element optical-infrared interferometer located on Mount Wilson, California (ten Brummelaar et al. 2005). All observations used the pupil-plane "CHARA Classic" beam combiner in the K' band at 2.15  $\mu$ m, while visible wavelengths (470–800 nm) were used for tracking and tip/tilt corrections. The observing procedure and data reduction process employed here are described in McAlister et al. (2005).

We interleaved calibrator and target star observations so that every target was flanked by calibrator observations made as close in time as possible, which allowed us to convert instrumental target and calibrator visibilities to calibrated visibilities for the target. Reliable calibrators were chosen to be single stars with expected visibility amplitudes >85% so they were nearly unresolved on the baselines used, which meant uncertainties in the calibrator's diameter did not affect the target's diameter calculation as much as if the calibrator star had a significant angular size. In a few cases, a calibrator had a stellar companion but at such a distance that light from the secondary star would not contaminate our interferometric measurements and the calibrator could therefore be treated as a single star.

To check for possible unseen close companions that would contaminate our observations, we created spectral energy distribution (SED) fits based on published *UBVRIJHK* photometric values obtained from the literature for each calibrator to establish diameter estimates. This also allowed us to see if there was any excess emission associated with a low-mass stellar companion or circumstellar disk. Calibrator candidates displaying variable radial velocities or any other indication of companions were discarded.

We used Kurucz model atmospheres<sup>8</sup> based on  $T_{\rm eff}$  and  $\log g$  values to calculate limb-darkened angular diameters for the calibrators. The stellar models were fit to observed photometry after converting magnitudes to fluxes using Colina et al. (1996) for UBVRI values and Cohen et al. (2003) for JHK values. See Table 2 for the  $T_{\rm eff}$  and  $\log g$  used and the resulting limb-darkened angular diameters.

Available to download at http://kurucz.cfa.harvard.edu.

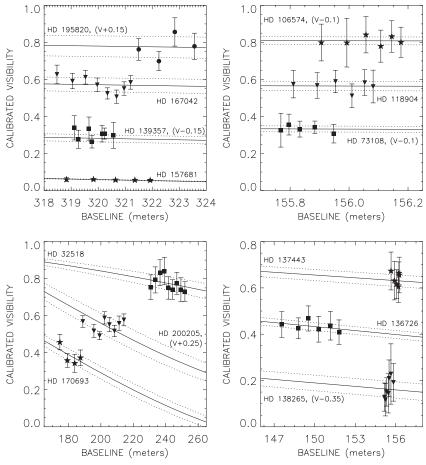



Figure 1. LD disk diameter fits for all the stars observed with one calibrator except HD 214868. The solid line represents the theoretical visibility curve for a star with the best-fit  $\theta_{LD}$ , the dashed lines are the  $1\sigma$  error limits of the diameter fit, the solid symbols are the calibrated visibilities, and the vertical lines are the measured errors. Some of the stars' visibilities were shifted as indicated by "(V  $\pm$  #)" so they would not overlap other data points.

# 4. DETERMINATION OF ANGULAR DIAMETER AND $T_{\rm eff}$

The observed quantity of an interferometer is defined as the visibility (V), which is fit to a model of a uniformly illuminated disk (UD) that represents the observed face of the star. Diameter fits to V were based upon the UD approximation given by  $V = [2J_1(x)]/x$ , where  $J_1$  is the first-order Bessel function and  $x = \pi B\theta_{\rm UD}\lambda^{-1}$ , where B is the projected baseline at the star's position,  $\theta_{\rm UD}$  is the apparent UD angular diameter of the star, and  $\lambda$  is the effective wavelength of the observation (Shao & Colavita 1992). A more realistic model of a star's disk involves limb-darkening (LD), and relationship incorporating the linear LD coefficient  $\mu_{\lambda}$  (Hanbury-Brown et al. 1974) is

$$V = \left(\frac{1 - \mu_{\lambda}}{2} + \frac{\mu_{\lambda}}{3}\right)^{-1} \times \left[ (1 - \mu_{\lambda}) \frac{J_{1}(x)}{x} + \mu_{\lambda} \left(\frac{\pi}{2}\right)^{1/2} \frac{J_{3/2}(x)}{x^{3/2}} \right].$$
 (1)

Table 3 lists the modified Julian Date (MJD), projected baseline (B) at the time of observation, projected baseline position angle ( $\Theta$ ), calibrated visibility ( $V_c$ ), and error in  $V_c$  ( $\sigma V_c$ ) for each giant star observed. Figures 1–3 show the LD diameter fits for all the stars.

The LD coefficient was obtained from Claret et al. (1995) after adopting the  $T_{\rm eff}$  and  $\log g$  values required for each star observed. The resulting LD angular diameters are listed in Table 4. The average difference between the UD and LD diameters are on the

order of a few percent, and the final angular diameters are little affected by the choice of  $\mu_{\lambda}$ . All but four stars have  $\theta_{LD}$  errors of 2% or less, three of the four have errors of only 3%, and the final star has a 5% error. Additionally, the combination of the interferometric measurement of the star's angular diameter plus the *Hipparcos* parallax (van Leeuwen 2007a, 2007b) allowed us to determine the star's physical radius. The results are also listed in Table 4. In principle, one can calculate the mass of each star from the physical radius and  $\log g$  values. However, the formal errors in  $\log g$  lead to errors in such mass estimates near the 50% level, thereby significantly decreasing their usefulness to this analysis.

For each  $\theta_{LD}$  fit, the errors were derived via the reduced  $\chi^2$  minimization method (Wall & Jenkins 2003; Press et al. 1992): the diameter fit with the lowest  $\chi^2$  was found and the corresponding diameter was the final  $\theta_{LD}$  for the star. The errors were calculated by finding the diameter at  $\chi^2 + 1$  on either side of the minimum  $\chi^2$  and determining the difference between the  $\chi^2$  diameter and  $\chi^2 + 1$  diameter. In calculating the diameter errors in Table 4, we adjusted the estimated visibility errors to force the reduced  $\chi^2$  to unity because when this is omitted, the reduced  $\chi^2$  is well under 1.0, indicating we are overestimating the errors in our calibrated visibilities.

Limb-darkened angular diameters were estimated using the relationship described in Kervella et al. (2004) between the (V-K) color and log  $\theta_{\rm LD}$  (see  $\theta_{\rm estimate}$  in Table 1). The table also lists  $R_{\rm estimate}$ , which were derived using  $\theta_{\rm estimate}$  and the stars' parallaxes. The major weakness of this method lies

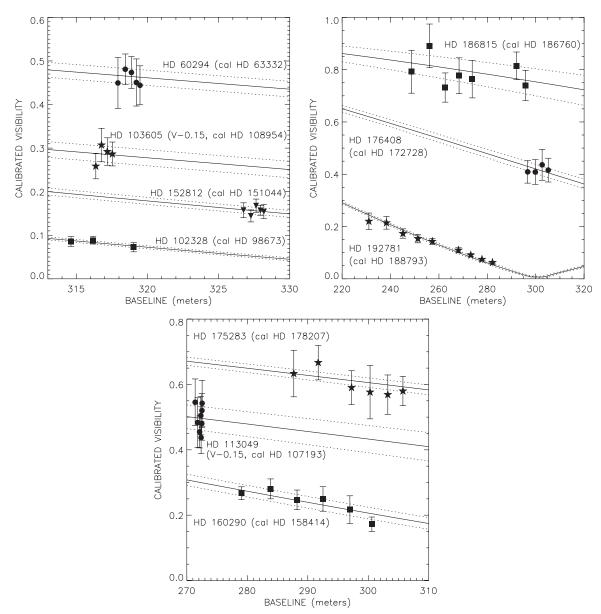
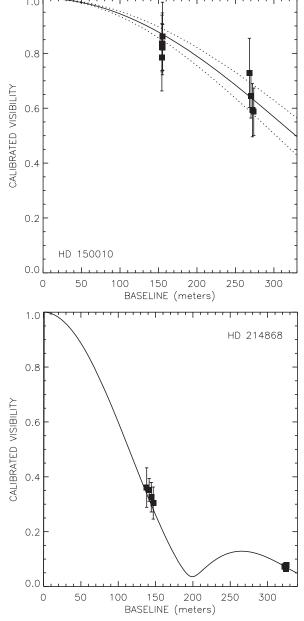



Figure 2. LD disk diameter fits for all the stars observed with two calibrators except HD 150010. The symbols are the same as listed in Figure 1. For the sake of clarity, the data points for one calibrator only are shown.

in the uncertainties surrounding the K-magnitudes, which were taken from two sources: the Two-Micron Sky Survey (TMSS; Neugebauer & Leighton 1969, errors  $\sim 2\% -5\%$ ) and the 2MASS All-sky Catalog of Point Sources (2MASS; Cutri et al. 2003, errors  $\sim 6\% -12\%$ ). Preference was given to the former because 2MASS measurements saturate at magnitudes brighter than  $\sim 3.5$  in the K band even when using the shortest exposure time. The large errors associated with 2MASS magnitudes for these bright stars led to large errors in angular diameter and physical radii estimates.


Once  $\theta_{\rm LD}$  was determined interferometrically, the  $T_{\rm eff}$  was calculated using the relation

$$F_{\text{BOL}} = \frac{1}{4} \theta_{\text{LD}}^2 \sigma T_{\text{eff}}^4, \tag{2}$$

where  $F_{\rm BOL}$  is the bolometric flux and  $\sigma$  is the Stefan-Boltzmann constant. The stars' V and K magnitudes were

dereddened using the extinction curve described in Cardelli et al. (1989) and interstellar absorption  $(A_V)$  values were from Famaey et al. (2005) except for HD 113049 and HD 176408, which had no  $A_V$  in the literature.  $A_V$  values for these two stars were estimated through a nonlinear, least squares fit and a reddening prescription from Fitzpatrick (1999), who presented a wavelength-dependent extinction curve. The intrinsic broadband color (V - K) was calculated and BCs were determined by interpolating between the [Fe/H] = +0.2, 0.0, and -1.0 tablesfound in Alonso et al. (1999). They point out that in the range of 6000 K  $\geqslant T_{\rm eff} \geqslant$  4000 K, their BC calibration is symmetrically distributed around a  $\pm 0.10$  mag band when compared to other calibrations. The average BC used here is 0.55, and because 0.10 is 18% of 0.55, we assigned a 18% error bar to our BC values. The bolometric flux was determined by applying the BC for each star and the  $T_{\rm eff}$  was calculated (see Table 4). All  $T_{\rm eff}$  errors are  $\leq 4\%$ , 11 stars have errors of  $\leq 2\%$ , and the major source of error in calculating  $T_{\rm eff}$  stemmed, again, from uncertainties in K magnitudes.

<sup>&</sup>lt;sup>9</sup> Explanatory supplement to the 2MASS All Sky Data Release and Extended Mission Products, http://www.ipac.caltech.edu/2mass/releases/allsky/doc/.



**Figure 3.** LD disk diameter fits for HD 150010 (top panel) and HD 214868 (bottom panel). The symbols are the same as listed in Figure 1.

Giant star masses were estimated using the PARAM stellar model  $^{10}$  from Girardi et al. (2000) with a modified version of the method described in da Silva et al. (2006). The input parameters for each star were its interferometrically measured  $T_{\rm eff}$ , its spectroscopically derived [Fe/H], its V magnitude from Mermilliod (1991), and its Hipparcos parallax (van Leeuwen 2007a, 2007b) along with the corresponding error for each value. The model used these inputs to estimate each star's age, mass, radius,  $(B-V)_0$ , and  $\log g$  using the isochrones and a Bayesian estimating method, calculating the probability density function separately for each property in question. da Silva et al. qualify mass estimates as "more uncertain" than other properties, so the resulting masses listed in Table 1 should be viewed as rough estimates only.



**Figure 4.** Comparison of photometrically estimated and interferometrically measured diameters. The squares and circles represent diameters estimated using K magnitudes from TMSS and 2MASS, respectively, and the diagonal solid line indicates a 1:1 ratio for the diameters. Note the significantly larger error bars associated with the photometric diameters, particularly those using 2MASS data. The outliers above and below the line are HD 118904 and HD 157681, respectively, and the discrepancies may be due to the calibrator used (see Section 5 for more details).

# 5. RESULTS AND DISCUSSION

In order to check how well the estimated and measured angular diameters agreed, we plotted photometrically estimated versus interferometrically measured angular diameters in Figure 4, and Figure 5 shows a similar plot for physical radii. The angular diameters determined using K-band photometry from 2MASS show generally higher errors in Figure 4 than the diameters determined using TMSS photometry. This plot clearly shows the advantage of measuring angular diameters interferometrically, as the errors are significantly smaller than the photometric estimates in all cases. There is an even scatter around the 1:1 ratio line, and all but two stars are within  $1\sigma$  of the line.

The outliers in both Figures 4 and 5 are HD 118904 and HD 157681. Neither star shows any sign of binarity in the literature, and the SEDs created using the  $T_{\rm eff}$  and log g based on their spectral type and Cox (2000) do not show any excess in the infrared wavelengths that would suggest a low-mass stellar companion or a circumstellar disk. In both cases, the problem may lie with the calibrator stars chosen. HD 157681 was observed using the calibrator HD 158460, and though the latter has a small estimated diameter (0.268  $\pm$  0.016 mas) and its SED shows no excess flux in the infrared that would indicate a low-mass stellar companion or circumstellar disk, HD 157681 was the only star observed with that calibrator and there could be an unseen companion that is not taken into account when estimating the star's diameter. Future observations of HD 157681 with different calibrators will make the situation clearer.

HD 118904 was observed using HD 124063 as a calibrator, and the same calibrator was used to observe the target star HD 113049 along with the second calibrator HD 107193. When

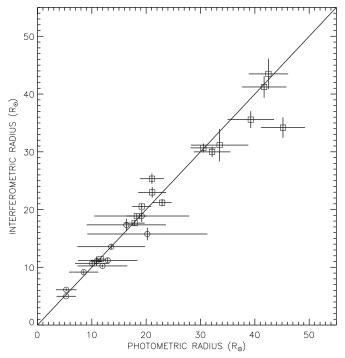
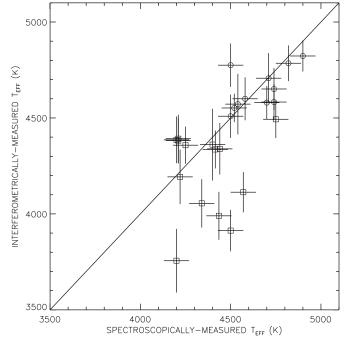

http://stev.oapd.inaf.it/cgi-bin/param\_1.0

 Table 4

 Interferometric Diameter and Effective Temperature Measurements of the K Giants


| Target<br>HD | $	heta_{	ext{UD,interferometric}}$ (mas) | $	heta_{	ext{LD,interferometric}}$ (mas) | σ <sub>LD</sub><br>(%) | $R_{ m linear}$ $(R_{\odot})$ | $A_{ m V}$ | ВС              | $L_{\star}$ $(L_{\odot})$ | $F_{\text{BOL}}$ (10 <sup>-8</sup> erg s <sup>-1</sup> cm <sup>-2</sup> ) | T <sub>eff</sub> (K) | σ <sub>Teff</sub> (%) |
|--------------|------------------------------------------|------------------------------------------|------------------------|-------------------------------|------------|-----------------|---------------------------|---------------------------------------------------------------------------|----------------------|-----------------------|
| 32518        | $0.828 \pm 0.022$                        | $0.851 \pm 0.022$                        | 3                      | $11.04 \pm 0.77$              | 0.06       | $0.43 \pm 0.08$ | $49.2 \pm 3.6$            | $10.8 \pm 0.9$                                                            | $4600 \pm 112$       | 2                     |
| 60294        | $1.014 \pm 0.010$                        | $1.044 \pm 0.010$                        | 1                      | $9.17 \pm 0.29$               | 0.05       | $0.35 \pm 0.06$ | $32.5 \pm 1.9$            | $15.6 \pm 1.0$                                                            | $4552\pm74$          | 2                     |
| 73108        | $2.161 \pm 0.019$                        | $2.225 \pm 0.020$                        | 1                      | $18.79 \pm 0.38$              | 0.00       | $0.51 \pm 0.09$ | $112.4 \pm 10.0$          | $58.3 \pm 5.2$                                                            | $4336 \pm 99$        | 2                     |
| 102328       | $1.546 \pm 0.006$                        | $1.606 \pm 0.006$                        | 0.4                    | $11.42 \pm 0.23$              | 0.00       | $0.51 \pm 0.09$ | $42.4 \pm 3.8$            | $31.0 \pm 2.8$                                                            | $4358 \pm 97$        | 2                     |
| 103605       | $1.066 \pm 0.009$                        | $1.098 \pm 0.010$                        | 1                      | $11.20 \pm 0.41$              | 0.00       | $0.52 \pm 0.09$ | $52.9 \pm 4.8$            | $18.8 \pm 1.7$                                                            | $4651 \pm 109$       | 2                     |
| 106574       | $1.458 \pm 0.027$                        | $1.498 \pm 0.028$                        | 2                      | $23.02 \pm 0.92$              | 0.00       | $0.54 \pm 0.10$ | $136.6 \pm 12.7$          | $21.4 \pm 2.0$                                                            | $4113 \pm 105$       | 3                     |
| 113049a      | $0.945 \pm 0.021$                        | $0.971 \pm 0.022$                        | 2                      | $17.35 \pm 1.07$              | 0.00       | $0.35 \pm 0.06$ | $119.7 \pm 7.2$           | $13.9 \pm 0.9$                                                            | $4583 \pm 93$        | 2                     |
| 118904       | $1.842 \pm 0.031$                        | $1.871 \pm 0.032$                        | 2                      | $25.38 \pm 0.88$              | 0.00       | $0.60 \pm 0.11$ | $136.0 \pm 14.1$          | $27.3 \pm 2.9$                                                            | $3913 \pm 108$       | 3                     |
| 136726       | $2.264 \pm 0.020$                        | $2.336 \pm 0.020$                        | 1                      | $30.68 \pm 0.76$              | 0.04       | $0.70 \pm 0.13$ | $229.2 \pm 28.2$          | $49.2 \pm 6.1$                                                            | $4055 \pm 126$       | 3                     |
| 137443       | $1.638 \pm 0.030$                        | $1.690 \pm 0.031$                        | 2                      | $20.51 \pm 0.62$              | 0.06       | $0.68 \pm 0.12$ | $96.1 \pm 11.5$           | $24.1 \pm 2.9$                                                            | $3990 \pm 125$       | 3                     |
| 138265       | $1.998 \pm 0.037$                        | $2.062 \pm 0.038$                        | 2                      | $43.40 \pm 2.75$              | 0.06       | $0.95 \pm 0.17$ | $337.8 \pm 57.5$          | $28.2 \pm 4.9$                                                            | $3758 \pm 166$       | 4                     |
| 139357       | $1.040 \pm 0.012$                        | $1.073 \pm 0.013$                        | 1                      | $13.63 \pm 0.51$              | 0.13       | $0.40 \pm 0.07$ | $73.6 \pm 5.1$            | $16.9 \pm 1.2$                                                            | $4580 \pm 86$        | 2                     |
| 150010       | $0.995 \pm 0.028$                        | $1.024 \pm 0.029$                        | 3                      | $15.84 \pm 1.08$              | 0.04       | $0.70 \pm 0.13$ | $98.9 \pm 12.2$           | $15.3 \pm 1.9$                                                            | $4572 \pm 158$       | 3                     |
| 152812       | $1.393 \pm 0.003$                        | $1.440 \pm 0.004$                        | 0.3                    | $31.16 \pm 2.82$              | 0.10       | $0.72 \pm 0.13$ | $270.5 \pm 34.4$          | $21.4 \pm 2.9$                                                            | $4193 \pm 142$       | 3                     |
| 157681       | $1.600 \pm 0.009$                        | $1.664 \pm 0.010$                        | 1                      | $34.22 \pm 1.78$              | 0.04       | $0.94 \pm 0.17$ | $381.7 \pm 64.4$          | $33.4 \pm 5.7$                                                            | $4361 \pm 187$       | 4                     |
| 160290       | $1.467 \pm 0.010$                        | $1.515 \pm 0.010$                        | 1                      | $17.65 \pm 0.42$              | 0.10       | $0.50 \pm 0.09$ | $114.4 \pm 9.5$           | $31.2 \pm 2.7$                                                            | $4493 \pm 98$        | 2                     |
| 167042       | $0.898 \pm 0.017$                        | $0.922 \pm 0.018$                        | 2                      | $4.98 \pm 0.07$               | 0.01       | $0.39 \pm 0.07$ | $11.7 \pm 0.8$            | $14.8 \pm 1.0$                                                            | $4785 \pm 93$        | 2                     |
| 170693       | $1.981 \pm 0.041$                        | $2.041 \pm 0.043$                        | 2                      | $21.19 \pm 0.60$              | 0.02       | $0.59 \pm 0.11$ | $149.7 \pm 15.3$          | $51.4 \pm 5.3$                                                            | $4386 \pm 122$       | 3                     |
| 175823       | $0.958 \pm 0.022$                        | $0.988 \pm 0.023$                        | 2                      | $18.88 \pm 1.04$              | 0.05       | $0.49 \pm 0.09$ | $132.7 \pm 11.3$          | $13.4 \pm 1.2$                                                            | $4509 \pm 113$       | 3                     |
| 176408       | $1.092 \pm 0.022$                        | $1.125 \pm 0.023$                        | 2                      | $10.24 \pm 0.23$              | 0.02       | $0.49 \pm 0.09$ | $49.2 \pm 4.2$            | $21.9 \pm 1.9$                                                            | $4775 \pm 113$       | 2                     |
| 186815       | $0.713 \pm 0.020$                        | $0.731 \pm 0.020$                        | 3                      | $6.11 \pm 0.25$               | 0.02       | $0.21 \pm 0.04$ | $18.2 \pm 0.7$            | $9.6 \pm 0.4$                                                             | $4823 \pm 81$        | 2                     |
| 192781       | $1.787 \pm 0.002$                        | $1.859 \pm 0.003$                        | 0.2                    | $35.57 \pm 1.46$              | 0.40       | $0.62 \pm 0.11$ | $405.2 \pm 43.8$          | $40.9 \pm 4.5$                                                            | $4342 \pm 119$       | 3                     |
| 195820       | $0.840 \pm 0.040$                        | $0.863 \pm 0.041$                        | 5                      | $10.69 \pm 0.62$              | 0.07       | $0.33 \pm 0.06$ | $50.6 \pm 2.8$            | $12.2 \pm 0.7$                                                            | $4707 \pm 131$       | 3                     |
| 200205       | $1.963 \pm 0.043$                        | $2.032 \pm 0.045$                        | 2                      | $41.23 \pm 2.08$              | 0.69       | $0.59 \pm 0.11$ | $569.9 \pm 58.6$          | $51.2 \pm 5.4$                                                            | $4392\pm125$         | 3                     |
| 214868       | $2.721 \pm 0.020$                        | $2.731 \pm 0.024$                        | 1                      | $29.98 \pm 0.84$              | 0.15       | $0.69 \pm 0.12$ | $286.9 \pm 34.9$          | $88.1 \pm 10.8$                                                           | $4339\pm134$         | 3                     |

Note. <sup>a</sup> The angular diameter and subsequent calculations are based on data calibrated using HD 107193 only. See Section 5 for more details.



**Figure 5.** Comparison of photometrically and interferometrically determined linear radii. The symbols and outliers are the same as listed in Figure 4.

the data were calibrated separately for HD 113049, the diameters showed a 0.08 mas difference, which is on the order of an 8% change. If HD 118904's diameter is reduced by 8%, the data point is within errors on the 1:1 ratio line for both plots in Figures 4 and 5. Because this is the case, only HD 107193 was



**Figure 6.** Comparison of spectroscopically and interferometrically measured effective temperatures. The symbols are the same as listed in Figure 4.

used in the calibration of HD 113049's data, and the angular diameter, radius, and  $T_{\rm eff}$  listed in Table 4 are based on those data alone.

Figure 5 shows that while a fair number of photometric and interferometric radii agree very well, there are some that show slight discrepancies, notwithstanding the error bars. This could

be due to a few different effects. First, the photometrically determined radii depend on temperature estimates that may not be correct. If the star is highly active or there is a very faint companion, these could affect the temperature and therefore radii estimates. Second, the LD law used to determine interferometric diameters and radii may not take certain stellar features into account, such as starspots or extremely active regions. This would not be a large effect because even altering the LD coefficient  $\mu_{\lambda}$  by 20% changes the limb-darkened angular diameter by an average of 0.7%. Third, the differences may be due to changes in the stars' convections zones, because as the star evolves the convection zone gets deeper. Convection is not well modeled, which may lead to errors in the photometric radii estimates.

We also plotted the interferometrically measured  $T_{\rm eff}$  versus those derived spectroscopically in Figure 6. There is some scatter off the 1:1 ratio line, particularly for the cooler stars. The errors in  $T_{\rm eff}$  do not show a trend with log g, diameter, radius, (V-K) color, distance, spectral type, metallicity, or BC. The discrepancies may be due to the inherent properties of the methods used to measure  $T_{\rm eff}$ . Spectroscopic values are based on Fe I and Fe II lines and measure the  $T_{\rm eff}$  in the part of the atmosphere where those lines are present, while interferometry calculates the overall  $T_{\rm eff}$  of the star using the measured diameter. It has been surmised that atmospheric models of K giant stars in the near-ultraviolet band are missing a source of thermal extinction, which would also affect the  $T_{\rm eff}$  measurements (Short & Hauschildt 2009).

Our next step will be to determine the oscillation frequencies of these stars so that we can compare the true masses of these stars with those estimated using evolutionary models.

Many thanks to Douglas Gies for his help and advice. The CHARA Array is funded by the National Science Foundation through NSF grant AST-0606958 and by Georgia State University through the College of Arts and Sciences, and S.T.R. acknowledges partial support by NASA grant NNH09AK731. We are also grateful to the user support group of the Alfred-Jensch telescope. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This publication makes use of data products from the 2MASS, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

# **REFERENCES**

Allende Prieto, C., & Lambert, D. L. 1999, A&A, 352, 555 Alonso, A., Arribas, S., & Martínez-Roger, C. 1999, A&AS, 140, 261 Bedding, T. R., et al. 2006, ApJ, 647, 558 Boyajian, T. S., et al. 2009, ApJ, 691, 1243

```
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Claret, A., Diaz-Cordoves, J., & Gimenez, A. 1995, A&AS, 114, 247
Cohen, M., Wheaton, W. A., & Megeath, S. T. 2003, AJ, 126, 1090
Colina, L., Bohlin, R. C., & Castelli, F. 1996, AJ, 112, 307
Cox, A. N. 2000, Allen's Astrophysical Quantities (4th ed.; Melville, NY: AIP)
Cutri, R. M., et al. 2003, The IRSA 2MASS All-Sky Point Source Cat-
   alog, NASA/IPAC Infrared Science Archive (Pasadena, CA: CalTech),
   http://irsa.ipac.caltech.edu/applications/Gator/
da Silva, L., et al. 2006, A&A, 458, 609
de Ridder, J., Barban, C., Carrier, F., Mazumdar, A., Eggenberger, P., Aerts, C.,
  Deruyter, S., & Vanautgaerden, J. 2006, A&A, 448, 689
Döllinger, M. P. 2008, PhD, LMU Munich
Döllinger, M. P., Hatzes, A. P., Pasquini, L., Guenther, E. W., Hartmann, M.,
   Girardi, L., & Esposito, M. 2007, A&A, 472, 649
Döllinger, M. P., Hatzes, A. P., Pasquini, L., Guenther, E. W., Hartmann, M., &
   Girardi, L. 2009a, A&A, 499, 935
Döllinger, M. P., Hatzes, A. P., Pasquini, L., Guenther, E. W., & Hartmann, M.
  2009b, A&A, 505, 1311
ESA 1997, VizieR Online Data Catalog, 1239, 0
Famaey, B., Jorissen, A., Luri, X., Mayor, M., Udry, S., Dejonghe, H., & Turon,
  C. 2005, A&A, 430, 165
Fitzpatrick, E. L. 1999, PASP, 111, 63
Frandsen, S., et al. 2002, A&A, 394, L5
Girardi, L., Bressan, A., Bertelli, G., & Chiosi, C. 2000, A&AS, 141, 371
Gustafsson, B., Bell, R. A., Eriksson, K., & Nordlund, A. 1975, A&A, 42, 407
Hanbury-Brown, R., Davis, J., Lake, R. J. W., & Thompson, R. J. 1974, MNRAS,
Hatzes, A. P., & Cochran, W. D. 1994, ApJ, 422, 366
Hatzes, A. P., & Zechmeister, M. 2007, ApJ, 670, L37
Johnson, J. A., Marcy, G. W., Fischer, D. A., Wright, J. T., Reffert, S., Kregenow,
  J. M., Williams, P. K. G., & Peek, K. M. G. 2008, ApJ, 675, 784
Kervella, P., Thévenin, F., Di Folco, E., & Ségransan, D. 2004, A&A, 426, 297
McAlister, H. A., et al. 2005, ApJ, 628, 439
Mermilliod, J. C. 1991, Catalogue of Homogeneous Means in the UBV System
   (Lausanne: Institut d'Astronomie, Universite de Lausanne)
Monet, D. G., et al. 2003, AJ, 125, 984
Morel, M., & Magnenat, P. 1978, A&AS, 34, 477
Mozurkewich, D., et al. 2003, AJ, 126, 2502
Neugebauer, G., & Leighton, R. B. 1969, Two-micron Sky Survey: A Prelimi-
  nary Catalogue (Washington, DC: NASA)
Niedzielski, A., Goździewski, K., Wolszczan, A., Konacki, M., Nowak, G., &
   Zieliński, P. 2009, ApJ, 693, 276
Nordgren, T. E., et al. 1999, AJ, 118, 3032
Pasquini, L., Bonifacio, P., Randich, S., Galli, D., & Gratton, R. G. 2004, A&A,
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992,
  Numerical Recipes in C. The Art of Scientific Computing (2nd ed.;
   Cambridge: Cambridge Univ. Press)
Sato, B., Kambe, E., Takeda, Y., Izumiura, H., Masuda, S., & Ando, H. 2005,
  PASJ, 57, 97
Sato, B., et al. 2008, PASJ, 60, 1317
Setiawan, J., et al. 2005, A&A, 437, L31
Shao, M., & Colavita, M. M. 1992, ARA&A, 30, 457
Short, C. I., & Hauschildt, P. H. 2009, ApJ, 691, 1634
Teixeira, T. C., et al. 2009, A&A, 494, 237
ten Brummelaar, T. A., et al. 2005, ApJ, 628, 453
van Belle, G. T., et al. 1999, AJ, 117, 521
van Leeuwen, F. 2007a, Hipparcos, the New Reduction of the Raw Data,
  Astrophysics and Space Science Library (Springer: Dordrecht)
```

Wall, J. V., & Jenkins, C. R. 2003, Practical Statistics for Astronomers, Princeton

Series in Astrophysics, Vol. 3 (Cambridge: Cambridge Univ. Press)

van Leeuwen, F. 2007b, A&A, 474, 653

 $<sup>^{11}</sup>$  If a second star is present and is more than  $\sim$ 2.5 mag fainter than the host star, the effects of the secondary star will be not seen in interferometric observations and would therefore have no effect on the angular diameter or physical radii measurements.