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E.1. INTRODUCTION

Di�raction e�ects may be signi�cant over long distances, even for a wide beam. Therefore,
unless care is taken, di�raction e�ects can seriously degrade the performance of an interfer-
ometric array. Previously, Tnago and Twiss (1980) considered di�raction e�ects for a small
diameter interferometer. Visibility losses were tabulated as a function of the pathlengths
of the two combining beams e.g. from 200 and 400 m respectively.) The atness of the
wavefronts assumed made it possible to calculate the wavefront analytically with only one
numerical quadrature. More recently, Hrynevych (1992) has extended these results with
more mathematical rigor and experimental veri�cation, and has considered the speci�c case
of the SUSI (Sydney University Stellar Interferometer). For beams with aberrations due
to atmospheric turbulence, analytic solutions seem very di�cult, and none have been pub-
lished to date. Therefore, numerical calculations from scalar di�raction theory (including
various formulations) have been used to estimate visibility losses. An earlier version of this
work (Bagnuolo 1988) \di�racted" model atmospheres numerically to examine the losses in
visibility in an interferometer as a function of beam size.

For the CHARA there are two wavebands of interest: 0.55{0.9 �m (�V, R, and I) and
2.1{2.4 (�K). Therefore, we need to consider di�raction e�ects for three cases:

� K-band observations, in which we are in the single-r0 regime without AO,

� Visual bands observations with an (AO) system,

� Visual bands without AO, limited to \1-2 � r0" apertures (i.e. 20{30 cm).

Ideally, one would like to reduce the beam size as much as possible in order to reduce the
size and cost of the optics, especially the Optical Path Length Equalizer (OPLE). There
is therefore a trade-o� between the beam reduction factor and the losses in visibility (and
other e�ects) due to di�raction. In the CHARA array the beam reduction factor of 8:1 thus
represents a compromise.

In the rest of this Appendix we will briey summarize scalar di�raction theory, the simula-
tions, and the implications for the CHARA Array.

E.2. SCALAR DIFFRACTION THEORY RESULTS

Because of the long pathlengths the Fresnel approximation is valid and thus (Goodman
1968):

U(x0; y0) =
ejkz

j�z

Z
U(x1; y1)e

f jk2z [(x0�x1)2+(y0�y1)2]gdx1; dy1
or
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U(x0; y0) =
ejkz

j�z
U(x1; y1) � e

jk(x2+y2)
2z (E:1)

where U(x0; y0) is the (scalar) amplitude at the output plane and U(x1; y1) is the amplitude
at the input plane, z is the distance, and * represents convolution.

The second relation expresses the output amplitude as the convolution of the input with
an oscillatory phase function. The problem with this formulation computationally is that
for moderately large x and y the oscillatory function varies signi�cantly over a pixel and is
di�cult to estimate (and to compute the convolution via a fast Fourier transform.)

An equivalent formulation is in terms of angular frequency (with a di�erent notation from
Goodman):

u(fx; fy; 0) = F [U(x1; y1; 0)]

u(fx; fy; z) = u(fx; fy; 0)H(fx; fy)

U(x0; y0; z) = F�1[u(fx; fy; z)] (E:2)

where we start with the input plane at z=0, and take its Fourier transform to get the angular
spectrum, u(fx; fy; o). The angular spectrum at a propagation distance z can be found by
multiplying the initial angular spectrum by a function:

H(fx; fy) = e[
j2�z
�

p
1�(�fx)2�(�fy)2] = 0; if f2x + f2y > 1=�2: (E:3)

Finally, the angular frequency at z is reversed transformed to get the (complex) amplitude.

If we look at the expression for H, we note that the maximum spatial frequency in, say, fx
is � 1=� or for � = 550 nm, the maximum fx = 1:8� 106m�1. For a reasonable pixel size
and wavefront irregularities of interest fx � 50�100m�1 � fx(max) so that the following
approximation in Equation E.3 can be made. For small b;

p
1� b � 1� 1=2b, so

H(fx; fy) � e(j2�z=�)e[�j�z�(f
2
x+f2y )] (E:4)

The �rst argument is just the (absolute) phase along the beam and is irrelevant. For
� = 550 nm and fx = 100 the argument in the second exponential reaches � at about 200
m. The slower variation of the argument in Equation E.4 is a computational advantage of
this formulation compared to Equation E.1. As Hrynevych (1992) points out, this general
formulation of scalar di�raction theory has the advantage of being able to directly use the
fast Fourier transform (FFT).

A number of di�raction calculations were made using equations Equation E.3 and E.4 and
the FFT as a preliminary check. A square aperture with a simulated aperture of 1 meter
(1 cm/pixel 128 x 128 pixel grid) was propagated from 100- 3200 m. The results were
compared to the well-known results via the Cornu spiral (Jenkins & White 1957). In all
cases the intensities produced by Equation E.3 and Equation E.4 agreed with the exact
results to within 1%.
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FIGURE E.1. Intensities for beams at 2.2 �m of 1m diameter reduced to 125mm and propa-
gated for 100m (left) and 200 m (right).

E.3. SOME EXAMPLES OF DIFFRACTION EFFECTS

In the proposed long baseline interferometer, beams will be not just transmitted via
siderostats, but reduced in diameter. Compared to the simple circular case, an added
e�ect is the di�raction produced by the central hole in the primary, which creates a se-
ries of smaller waves like the primary's edge. Another more important e�ect is due to the
magni�cation. A heuristic way of looking at the situation is that, �rst, di�racted rays are
created at the edges of the primary aperture. The angles of all rays, including the di�racted
rays, are then magni�ed by a factor of m. For the current CHARA design m = 8. Thus the
e�ect of magni�cation is to increase the spread of di�raction waves absolutely by a factor of
m. But, because the size of the beam is reduced by 1/m, the net e�ect of magni�cation is
to increase the di�raction e�ects relative to the beam by a factor of m2. Thus, di�raction
may become a serious problem if m is too large. (Note that by the same type of argument
as above, di�raction e�ects vary only linearly with the distance).

We consider �rst di�raction e�ects on a at wave (r0 very large).

Figure E.1 shows the di�raction pattern from an at wavefront at 2.2 �m into a 1.0m
aperture telescope, reduced to a 12.5 cm beam and propagated for 100 and 200 meters
respectively. Figure E.2 shows the corresponding intensity cross-sections of these beams.

The \ringing" in these beams can be quelled by apodization, for the price of a loss of light.
The cross-section of the beam can be modi�ed by a kind of Hamming window, i.e., the
transmission may be written:

t(n) = 0:54� 0:46 cos(�(50� n)=�n); 50��n � n � 50 (E:5)

where t(n) is the transmission at pixel n from center (Note the nominal radius of n =
50 cm), and �n is the transition bandwidth. This sort of window makes a smooth taper
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FIGURE E.2. Intensity cross-section for beam at 2.2 �m of 1m diameter reduced to 125mm
and propagated for 100m.

between 0.08 transmission at the edge and 100% transmission at n = 50 ��n. Figure E.3
shows the result of an apodized beam with �n =8 cm propagated as in Figure E.1. Note
the improvement, at a cost of about 16% in lost light.

E.4. DIFFRACTION EFFECTS ON THE CHARA ARRAY

The three relevant cases to the CHARA Array are:

� K-band observations, in which we are in the single-r0 regime without AO.

� Visual band observations with an (AO) system,

� V-band without AO, limited to \1-2 � r0" apertures (i.e. 20-30 cm.

In order to evaluate di�raction e�ects on the CHARA Array, �rst an atmospheric phase-
plate model (Bagnuolo 1988) is constructed out of a �nite number of waves (51 in this
model) whose spatial frequencies kn are distributed at uniform logarithmic intervals, and
1=L0 < kn < 1=l0, where (L0 � 100 m and l0 � 1 mm). The amplitudes are deterministic
and chosen to give the Kolmogorov structure function. Wave directions (�n) and phase
shifts (�n) are randomly chosen.

Wavefronts are next \propagated" through two telescopes and light-combining optics for
given pathlengths. Model wavefront can be corrected for tilts and other abberations. The
two beams are combined in terms of complex amplitude via a \beamsplitter", in which the
reected beam is retarded by � radians. Another set of output beams is created by creating
a �/2 delay in the second beam before combining. Tango & Twiss (1980). Then an estimate
of the visibility is given by

Ijkr = I0[1 + (�1)j cos(�k + r�=4)] (E:6)
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FIGURE E.3. Intensities for beams at 2.2 �m of 1m diameter reduced to 125 mm and propa-
gated for 100m (left) and 200m (right). Beams are apodized with �n = 8 cm.

where

j=1,2 are the two pupil planes

r=0,1 (with/without the �/4 phase switch

k= 1 to m, observation no.

I0 is the mean intensity.

Let:
q = 1=m

X
k=1

n(N1k0 �N2k0)
2 + (N1k1 �N2k1)

2 (E:7)

E.4.1. The K-band IR Case

Figure E.5 shows the result of one simulated visibility measurement for the IR case, in
which the propagation distances were d1 = 100 and d2 = 200m respectively. The seeing
was r0(V )= 20 cm, or r0(K)=106cm (very good).

Table E.1 shows visibilities and di�raction-induced losses for several cases in the IR. In
these simulations the average of twenty sets of phaseplates were used. The visibility is
estimated from V � (V 2)1=2. Some comments on these results: First, the typical worst case
for the IR normally is the (100,200)m case from con�guration B, but we can operate in
con�guration A in the IR with small visibility losses. [It was shown in Tango (1980) and
Hyrenevich (1992) that the worst visibility losses from di�raction occur from somewhat
unequal con�gurations, such as (100,200) m rather than equal lengths like (200,200) m.]
Secondly, to maintain high visibility without AO it is necessary to stop down the aperture
somewhat during mediocre seeing. Thirdly, with full aperture under mediocre seeing (and
reduced visibility) di�raction losses are somewhat less. Finally, in the worst cases at least
10% of the light is di�racted beyond the original edge of the aperture [the �fth column lists
normalized intensities of the combined beams inside the original aperture relative to the
no-di�raction case).
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FIGURE E.4. Intensities for four output beams at 2.2 �m under very good seeing propagated
for 100m (left) and 200m (right).

E.4.2. The Visual Band Case with No AO

In the visual bands with no AO, sub-apertures must be used in order to obtain an adequately
high visibility under normal conditions.

Figure E.5 shows the result of one simulated visibility measurement for the visual case (at
700nm) in which the propagation distances were d1 = 100 and d2 = 200m respectively.
The seeing was r0(0:55�m)= 20 cm.

Table E.2 shows visibilities and di�raction-induced losses for several cases in the visual
bands. In the visual-band cases, di�raction losses are relatively small under favorable seeing
conditions. Under mediocre conditions, with long pathlengths visibility losses can approach
0.10. This is probably still acceptable, as long as it is taken into account via calibrations.
There is a bit of improvement for di�raction losses if a larger aperture (at lower visibility)
is used.

E.4.3. The Visual Band Case with AO

In the visual bands with an AO system, the whole 100 cm aperture can be used. If the
compensation is perfect (at wavefront), there is little loss of visibility for di�raction at
visual wavelengths for the CHARA array.

Figure E.6 shows the result of one simulated visibility measurement for a at wavefront at
550nm in which the propagation distances were d1 = 200 and d2 = 400m respectively.

Table E.3 shows visibilities and di�raction-induced losses for several cases in the visual
bands with an AO system. In order to simulate imperfect AO systems, a residual fractional
wavefront error, denoted by � has been left in the models. (i.e. � =0.10 means that 90%
of the wavefront error has been successfully corrected by the AO system.
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TABLE E.1. Visibilities for IR Cases.

r0(K) Aperture ) d1 d2 I V �V
(cm) (cm) (m) (m) (norm)

106 100 0 0 1.000 0.867 0.000
100 200 0.917 0.848 0.019
200 400 0.879 0.841 0.026

53 100 0 0 1.000 0.642 0.000
100 200 0.918 0.643 -0.001
200 100 0.872 0.647 -0.004

53 75 0 0 1.000 0.740 0.000
100 200 0.999 0.713 0.027
200 400 1.028 0.686 0.054

FIGURE E.5. (Right) Intensities for four output beams at 700 nm under very good seeing with
35 cm apertures propagated for 200 and 400m. (Left) Intensities for four outbeams with AO System
with residual error �=0.25
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TABLE E.2. Visibilities for Visual Band Cases, no AO.

r0(V ) � Aperture ) d1 d2 I V �V
(cm) (cm) (�m) (m) (m) (cm) (norm)

20 0.55 20 0 0 1.000 0.862 0.000
200 400 1.010 0.802 0.060

20 0.55 30 0 0 1.000 0.757 0.000
200 400 1.014 0.715 0.042
300 600 1.002 0.702 0.055

10 0.55 15 0 0 1.000 0.743 0.000
200 400 0.979 0.632 0.111

10 0.70 20 0 0 1.000 0.753 0.000
200 400 0.996 0.656 0.097

10 0.70 25 0 0 1.000 0.694 0.000
200 400 1.001 0.599 0.095

TABLE E.3. Visibilities for Visual Band Cases, with AO.

r0(V ) � � d1 d2 I V �V
(cm) (�m) (m) (m) (cm) (norm)

10 0.70 0.25 0 0 1.000 0.785 0.000
200 400 0.942 0.777 0.008

20 0.70 0.30 0 0 1.000 0.885 0.000
200 400 0.943 0.871 0.014
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FIGURE E.6. Intensities for four output beams at 0.55 �m under AO system with 25% residual
error.

E.5. CONCLUSIONS

The amount of di�raction e�ects in the system is proportional to the beam reduction factor
squared and the propagation distance. There is therefore a tradeo� between the reduced
cost of a smaller beam (in OPLEs, buildings, etc.) and losses in measured visibility due to
di�raction e�ects. The latter are relatively small for the IR cases of interest, and insigni�-
cant for the visible-band AO cases. The worst cases are for the v-band (at 550 nm) without
AO under mediocre seeing, and even then losses are acceptable and could be calibrated out.
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