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Q.1. INTRODUCTION

The perimeter of the performance `envelope' of the CHARA Array determines the useful
science that can be done with it. The performance of the CHARA Array can be speci�ed
in terms of at least four dimensions:

1. The maximum resolution.

2. The magnitude limit.

3. The size and \complexity" of the object.

4. The wavebands in which the Array operates.

The CHARA Array is designed to operate primarily in the regions 0.55{0.9�m (�V , R,
and I) and 2.1{2.5�m (�K). These wavebands were chosen because the classes of scienti�c
programs tended to have a bimodal distribution, requiring either high resolution of relatively
simple objects in the visual or lower resolution of larger more complex objects in the K-band
IR.

Given these desired wavebands, the ability to image objects is given by the �rst three per-
formance criteria. (We use the term \image" broadly, including determining the diameters
of stars, their limb-darkening, etc. { i.e. the lowest moments of the object that can be
determined from visibilities only.) In the rest of this report we will estimate the resolution
limits, magnitude limits, and how well various objects can be imaged by the CHARA Array.

Q.2. RESOLUTION LIMITS

Figure Q.1 shows the anticipated limits of the Array in terms of the size and visual magni-
tudes of representative stellar photospheres. Note that for these performance limits, samples
of virtually all spectral types of stars can be resolved, even M dwarfs and O stars. It can
be seen from this �gure that the CHARA array o�ers only a slight increase in limiting
magnitude over existing speckle techniques, but a gain of at least two orders of magnitude
in resolution. The approximate maximum resolution of the Array is given by the �rst nulls
of the visibilities, which are � � 1:22�/D for resolved stars and � � 0:5�/D for unresolved
binaries. By moving three of the seven telescopes, the Array can be recon�gured for higher
or lower angular resolution. The longest baselines in array con�gurations \A" and \B" are
354 and 199m respectively, which correspond to the angular resolutions given in Table Q.1.

Q.2.1. Brown Dwarf/Planet Search

In speckle interferometry, a kind of \super-resolution" can be obtained of the motion of a
third body about the orbit of a binary star (see Cole et. al. 1992 for an example). In speckle
interferometry, the orbit of a binary can be determined to precision of better than 1mas,
or 3% of an Airy disk. A similar advantage with the CHARA Array can be anticipated.
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FIGUREQ.1. Magnitudes and sizes of representative stellar types. The darker shading indicates
the range accessible to speckle interferometry, while the lighter shading indicates the range (with
and without adaptive optics) accessible to the proposed CHARA Array.

TABLE Q.1. Resolution limits for CHARA Array, in milliarcseconds.

Object Con�g. 550nm 900nm 2200nm

Binary A 0.160 0.262 0.641
B 0.285 0.466 1.140

Res. Star A 0.391 0.640 1.560
B 0.696 1.138 2.782

Simulations with the CHARA Array layout have shown that a point on a binary star orbit
can be determined to a precision of as small as 10{20 micro-arcsec (�as). This is more
than enough to detect Jovian-type planets at 10pc, which would typically cause a motion
of 100�as.

Q.3. MAGNITUDE LIMITS

There are three servo systems in the Array:

1. Fringe-tracking (Zernike n=1).

2. Tip-tilt (n=2,3).

3. Higher order Adaptive Optics (AO) (n >3).
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These systems, along with the detector system, determine the limiting magnitude (and
visibility losses) for the Array. As in a chain, the weakest link determines the magnitude
limit for the system as a whole. Typically, as we shall see, the fringe-tracking system has
the worst magnitude limit. Therefore, we should obtain the highest possible collecting
aperture consistent with maintenance of good fringe visibility in order to get more photons
into the fringe-tracking system. However, if an AO system is used, the limiting magnitude
decreases with the number of actuators or Zernike modes corrected, and at some point the
magnitude limit from the AO system becomes worse than that from the fringe-tracking
system. Therefore, it is important to estimate the e�ect of the degree of AO compensation
for the proposed 1m apertures. Ideally, we would like an AO system with the fewest Zernike
modes, and therefore the highest magnitude limit, consistent with high visibility (V � 0:7).
[A description of the AO options is given in Appendix S.]

Q.3.1. Description of Simulations and Results

We obtained the results of realistic simulations of an AO system tailored to the CHARA
Array from a group at Science Applications International Corp. (SAIC), headed by Dr. Russ
Vernon. Simulations were done to estimate the e�ect of the degree of AO compensation.
The three cases considered were AO systems that correct for various Zernike modes:

1. 3 (tip/tilt)

2. 6 (defocus and astigmatism)

3. 21

The simulations include di�raction e�ects and four sources of noise:

1. Fitting error | the wavefront cannot be completely matched by the degree of Zernike
terms.

2. Servo lag | 40Hz bandwidth was used, with 5ms integration times.

3. Processor lag | 3.5ms was used.

4. Photon noise { for the case with 30 photons/actuator.

Again, an AO system with the fewest Zernike modes consistent with high visibility (V � 0:7)
is desirable. Table Q.2 shows the results of both simulations and analytical calculations from
SAIC. Note �rst that Strehls of � 0:7 are attained only with � (D=r�)

2 actuators, i.e. one
actuator for every r�diameter patch on the aperture. For one-fourth as many actuators
(every 2� r� diameter patch), the Strehl is about 0.4.

In Table Q.2, the servo lag due to a 5ms sampling rate and 40Hz bandwidth appears
acceptable. The additional loss of Strehl ratio from the processor lag, assumed to be 3.5ms,
is signi�cant. Of this, 2.5ms of the processor lag comes from the 5 ms sampling rate, and
1.0ms comes from the actual speed of computation. A good control system should largely
eliminate this latter source of error, and for this somewhat pessimistic atmospheric model,
a sample time in the range of 3ms should improve the former source. Finally, we note an
additional loss due to photon noise, assumed to arise from 30 photons per AO element. As
shown in Appendix S, 50 per element is a safer target to minimize this loss.

We performed additional simulations to examine the relation between Strehl ratio and
visibility amplitudes, by combining beams from three `telescopes' together in a simple non-
redundant pattern. Figure Q.2 shows one typical fringe pattern. Note the three fringe
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TABLE Q.2. Strehl ratio results (�visibilities)

r� Zernike Fit FE + FE + SL + FE + Sl + Pl +
Mode Error Servo Lag Proc. Lag Photon Noise

20 cm 3 0.25 0.24 0.17 0.13
6 0.40 0.38 0.29 0.23
10 0.56 0.53 0.40 0.33
21 0.73 0.68 0.54 0.45

10 cm 3 0.04 0.04 0.02 0.02
6 0.07 0.065 0.05 0.045
10 0.18 0.16 0.09 0.08
21 0.38 0.34 0.18 0.16

patterns in the x-direction, y-direction, and diagonally from upper left to lower right. The
fringe spacing (relative tilt of beams from telescopes B and C) was set to produce fringes
with spatial frequencies of 10 units di�erences in x and y. The 61�61 complex numbers
de�ning the apertures were embedded into 128�128 complex arrays.

Figures Q.3 and Q.4 show the average fringe amplitudes (visibilities) for an average of 200
frames for a case with good seeing and high-order AO. The corresponding Strehl ratio,
calculated by SAIC, was 0.54, very close to the normalized fringe visibilities for both the
3-beam and 2-beam combination cases (0.55 and 0.54 respectively).

We can check this result by referring to the simple analytical AO model described in Ap-
pendix S. The Strehl is given by S = exp(��2), where �2 is the total wavefront (squared)
error, which is the sum of the wavefront �tting error due to a �nite number of actuators and
the error from the servo. For high intensities, �2 = �2fit+�2servo, where �

2

fit � 0:35(rs=r�)
5=3

and �2servo = 0:96(td=t�)
5=3. Under the assumptions made by Vernon for the n=21 and r�=

0.2m case, (and t�= 7.9ms), we have S � 0:45, which is fairly close to the value of 0.54
from the simulations.

Figure Q.5 shows the fringe amplitudes for a low-order (n=6) AO case. In this case the fringe
amplitudes for the 3- and 2-beam cases have been reduced to 0.26 and 0.22, respectively,
close to the calculated Strehl ratio of 0.28. These results suggest a simple `two stream
model' of the beam combination | a completely coherent beam with an intensity equal to
the Strehl ratio, and a completely incoherent beam that contributes to scattering the light
and reducing the contrast of the fringes.

There are several conclusions to be drawn from these simulations:

� The Strehl ratio and visibility amplitudes are nearly equal. Thus, calculations of
Strehl alone are su�cient to predict the visibility losses of an Array with an AO
system. Furthermore, the simulations are slightly more optimistic than the analytical
model of Appendix S.

� An AO system with a S � 0:7 should be a goal, and this requires at least (D=r�)
2

actuators or Zernike modes of correction. (Simulations have shown that for higher
order AO the deformable mirror (DM) and wave-front sensor (WFS) geometry have
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FIGURE Q.2. Simulated fringe pattern for 3-beam combination: r�= 20 cm; AO with 21 Zernike
modes; servo BW = 40Hz; additional processing lag of 18ms (3.5 steps); no photon noise.

little e�ect on the performance.) Because the visibilities vary greatly with r� in an
actual system, it will be more di�cult to obtain high visibility accuracies in operating
with low visibilities, because of variations in r� between target and calibration source.

� Photon noise reduces the visibility signi�cantly for simulations with 30 photons per
actuator element. Thus, the analytical estimate of 50 photons in both Appendices O
and S as a practical limit appears reasonable.

Q.3.2. Magnitude Limit Estimates for Visual

A spread sheet calculator model has been developed (see Appendix R) to calculate optical
throughputs and magnitude limits. Some basic results and assumptions from the through-
put model are:

� AO System| The AO system has a bandwidth of 300nm and a QE of 80% (a good
CCD); readout noise ignored; 50 photons required per subaperture, and 50% of the
light after the telescope is used for this system (or � 40% of the incident light).

� Tip/Tilt System | A CCD with 80% QE is used over a 300 nm band, 50 photons
are required for tip/tilt, and � 5% of the incident light in the system goes for tip/tilt
detection.

� Fringe-Tracking System|The detector bandwidth is 200nm; 80% QE.We require
100 photons for FT.
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FIGURE Q.3. Fourier amplitudes for 3-beam combination: 200 simulated frames; r�= 20cm;
n=21 AO; other parameters as in Figure Q.2. Amplitudes are reduced to 0.55 of nominal. Closure
phase errors are 0.25 radian.

FIGURE Q.4. Parameter amplitudes for 2-beam combination: conditions as in Figure Q.3.
Amplitudes reduced to 0.54 of nominal. (No closure phase exists.)
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FIGURE Q.5. Fourier amplitudes for 2-beam combination: 100 simulated frames; AO with 6
Zernike modes; servo BW = 40Hz; additional processing lag of 3.5 time steps (18ms); no photon
noise. Amplitudes are reduced to 0.22 of nominal.

� Tracking Methodology | The following magnitude limits are for active fringe
tracking (FT). It should be possible to extend the magnitude limit by employing
passive open-loop fringe tracking out to the point at which either the AO or tip/tilt
system fails, which would gain as much as two magnitudes in some cases. It is for this
reason that the magnitude limit in Figure Q.1 was set at 14.

� Imaging System | Current design calls for a DQE of only 10% for this system,
which could improve if very low noise CCDs become available. Note that if this
magnitude is less than that of the rest of the system, the visibilities can still be
measured.

� IR Imaging | We do not currently plan separate tip/tilt and FT systems in the
K-band IR; thus, the visual bands are still used for these purposes. For the IR cases,
we have assumed apertures of 80 cm and 100 cm for average and excellent seeing cases.

In Table Q.3 we have also assumed that with a laser guide star the magnitude limit on the
AO system is essentially removed. We have further assumed that using a sub-aperture of
1.5 r� without AO is \good enough" in terms of acceptable visibility losses (V � 0:8). We
also assumed a t� of 5 and 11ms for the r� = 10 and 20 cm cases respectively. (based on
t� / r1:2

�
.)

Finally, we note that the available technologies seem to de�ne three regions in which no AO,
AO, and AO with laser guide stars are advantageous. Basically, small telescopes (�0.3m
in V , 1.0m in K) do not need any compensation beyond tip/tilt. Medium sized telescopes
(roughly 0.7 { 1.2m in V and 3.3 { 5.5m in K) show a signi�cant improvement with an
AO system, but do not gain as much as an additional magnitude with the laser guide star.
Large telescopes (>1.2m in V and >5.5m in K) must have a laser guide star in order to
realize an aperture advantage in magnitude limit.
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TABLE Q.3. Magnitude limits for the three servos and detector.

Seeing AO Tip/Tilt Fringe High Order Mag. Limit
Used Track AO V K

Average No AO 13.3 7.7 N/A 7.7 13.8
(10cm) AO 12.5 11.0 9.4 9.4 13.5

Laser 13.3 11.8 17.0 11.8 14.3

Excellent No AO 14.2 10.1 N/A 10.1 15.1
(20cm) AO 13.3 11.9 11.8 11.8 14.2

Laser 14.1 12.7 17.0 12.7 15.1

We therefore conclude that:

� Seeing is very important, especially without AO systems. The limiting magnitude
without AO improves by 2.4 and 1.3 magnitudes in V and K, respectively, between
the \average" and \excellent" seeing cases.

� Introducing an AO system improves the limiting magnitude in the visual for the system
by 1.7 magnitudes for both seeing cases. This improvement is due to the fact the whole
telescope aperture can be used, greatly increasing the number of photons reaching the
fringe-tracker, which is generally the \weak link". There is no justi�cation for using
an AO system in the IR, however.

� Using a laser guide star improves the limiting magnitude in V by an additional 2.4
and 0.9 magnitudes for the two seeing cases. In the average seeing case a laser guide
star would seem advantageous but it is unclear whether this improvement justi�es
the extra expense. In K the laser guide star under excellent seeing just returns the
system to the level of the no-AO case!

� The proposed CHARA Array 1m telescopes are about the largest apertures that can
be used without AO in K. At the same time the CHARA Array o�ers a gain of 2 {
3 magnitudes over a small telescope system (�30 cm) in V and K.

� Large apertures will require laser guide stars.

Q.4. SIZE AND COMPLEXITY LIMIT

Another limitation on the performance of an interferometric array is due to the �nite cov-
erage of object visibilities in the u � v plane. By the Van Cittert{Zernike Theorem the
object intensity O(x; y) is a Fourier transform pair with complex visibility V (u; v). Along
any baseline connecting two telescopes we obtain the complex visibility of the object at
a single point, say (u0; v0). Suppose we directly Fourier transform the observed visibility
data V 0(u; v) in order to obtain an estimate of the object, O0(x; y). Because of inadequate
sampling (due to a �nite number of telescopes), various spatial frequencies of the object
are not measured, resulting in \sidelobes" and other objectionable features in the recov-
ered images if the original object has signi�cant power in the missing spatial frequencies.
There are a number of techniques for trying to improve the image quality from the \dirty

Q � 8



PERFORMANCE LIMITS

image", O0. The CLEAN algorithm (Hogbom 1974, Schwarz 1978, Cornwell 1983) is an
iterative technique that uses the \dirty beam" (the point spread function from the u � v
coverage with a point source) to produce a \cleaned image". Another faster, but somewhat
lower quality, approach is to interpolate between observed visibility data points to �ll in
the u � v plane. Both methods improve the image quality, but they can only do so much
when e�ective u� v coverage is lacking.

By \e�ective" coverage, we mean baselines in which the modulus of the visibility is at
least 0.05. This is probably conservative in that it is possible that a fringe-tracking system
could work with visibilities lower than this for bright over-resolved objects. Moreover,
a fringe-tracking system will use the shortest baselines possible. Binaries with unresolved
components can in principle be observed by baselines of inde�nite length, but resolved stellar
photospheres can only be observed by baselines below a cuto�. Stars are over-resolved when
their �rst visibility null doesn't even reach the smallest baseline of the array. Stars are also
under-resolved when the �rst null falls outside the largest available baseline. For each of
the CHARA con�gurations, there is a range of stellar diameters of roughly 15:1 for which
useful data can be obtained.

Q.4.1. U � V Coverage and Object Image Recovery

A variety of simulations were done to estimate the quality of images that could be obtained
with the CHARA Array. In these simulations, we start with the u � v coverage for the A
or B baseline con�gurations and a given observation time. We then obtain the dirty beam
and dirty image for a given object and attempt to reconstruct the image with CLEAN and
visibility interpolation techniques. We have used Cornwell's (1983) modi�cation of CLEAN
to improve the smoothness of the images. The visibility interpolation is done by triangular
linear interpolation between the `observed' visibility points. The resulting reconstructed
images show approximately what can be done with a given array con�guration and number
of observations. (In some simulations we have also included the e�ects of partially �lling in
the u� v plane by observing over a wide wavelength range.)

Figure Q.6 shows an 18-star \cluster" imaged by the array. Note the complex fringe pattern
in the u�v coverage (upper right). In general, images such as a star cluster with unresolved
point sources are easier to recover, because the fringe patterns extend over all the u � v
coverage of the array. In resolved systems, as in Figure Q.7, only a subset of baselines
are e�ective. In this �gure, we see reconstructed images of a binary with two resolved
photospheres, tidal and radiative distortions, and limb-darkening. Note that the dirty
image doesn't even show a distinct secondary star, but that both stars are clearly visible
after CLEAN and visibility interpolation. Figure Q.8 shows what happens when stellar disks
are over-resolved: eventually only the shortest baselines provide any information about the
object. Finally, Figure Q.9 shows the results of fast \snapshot" u�v coverage versus repeat
observations to expand the u � v coverage. Note that even the \snapshot" mode provides
reasonable images of simple objects. A further improvement which we have simulated occurs
for observations with a large enough spectral range, i.e. ��=� � 0:2.

Q.4.2. Object Resolution and Magnitude Limits

In Figure Q.8 it is obvious that stars can be over-resolved as well as under-resolved. Figure
Q.10 shows the region of stellar photospheres accessible to the CHARA Array \A" con�g-
uration, which has a maximum baseline of 354m. A given stellar temperature de�nes a
surface brightness at 600nm, which gives an upper and lower limit on stellar magnitudes
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FIGURE Q.6. A resolved cluster. Top Left: star cluster, the object. Top Right: modulus of
visibilities. The two images in the bottom row are the resulting cleaned image on the left and the
interpolated image on the right.

for the upper and lower limits on sizes the array can resolve. For the CHARA \B" con�g-
uration, these limits move upward about 2.3 magnitudes. It is evident that stars of every
spectral class can be resolved with the CHARA Array (This is one reason why this set of
baselines was chosen.) This �gure is pessimistic in the sense that if any signi�cant small
bright or dark surface features exist on the photospheres, they can be imaged, even if the
star is in the \over-resolved" region.

Q.5. CONCLUSIONS

The test of any scienti�c instrument's performance is ultimately what science can be done
with it. The four performance dimensions of the CHARA Array were: 1) the maximum
resolution, 2) the magnitude limit, 3) the size and complexity of the objects that can be
imaged with it, and 4) the operating wavebands.

In terms of criterion 4) above, the Array is designed to operate primarily in two wavebands,
both 0.55{0.9 �m (�V , R, and I), and 2.1{2.5�m (�K).

High resolution of visual objects, criterion 1), requires a long maximum baseline. The max-
imum resolution of the longest baseline (354m) at 550nm is 0.16 and 0.39milliarcseconds
for binaries and resolved stars, respectively.

Somewhat lower resolution of more complex K-band objects (e.g. YSO's) dictated good
u�v plane coverage over smaller baselines. The CHARA design, with seven telescopes that
can be positioned into two con�gurations, attempts to adress these needs. We have shown
that complex objects could be imaged with the CHARA Array (performance criterion 3).

Finally, our choice of 1m apertures was again a design compromise. The CHARA Array
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FIGURE Q.7. An example of the image quality improvement using the CLEAN or interpolation
methods. The top left box is the object, a binary system with both stars resolved including limb
darkening. The top right box is the dirty image obtained using the A con�guration. The two images
in the bottom row are the resulting cleaned image on the left and the interpolated image on the
right. The cleaned image is superior but took much longer to calculate.

FIGURE Q.8. Stars of various sizes (top) along with their images using the interpolative
method. The stellar diameters are, from left to right, 5, 10, 20 and 40 pixels where a pixel is
306:4 � � arcseconds. For example at 0.5 microns the images would be 0.77, 1.53, 3.06 and 6.12
milliarcseconds. The e�ect of over-resolution is clear in the largest objects. For these objects the B
con�guration would need to be used.
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FIGURE Q.9. An illustration of imaging a resolved star with limb darkening using di�erent
u � v plane coverages. In each row the box on the left shows the u � v plane coverage, with a
full aperture on the top and a `snapshot' coverage on the bottom. The picture in the middle is
the resulting dirty image and an interpolated image is shown on the right. While the dirty image
degrades quickly, the interpolated image maintains good quality. For simple objects, a snapshot
mode supplies su�cient u� v plane coverage for the array to supply good images.
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FIGURE Q.10. The projected performance of the Array for various stellar magnitudes and
classi�cations. In the top left section of the plot, stellar atmospheres are over-resolved, and the
contracted B con�guration of the Array would be required. Alternatively the objects in this section
could be studied using aperture masking or speckle techniques. On the bottom right, stellar atmo-
spheres will be unresolved but multiple star systems, such as binaries, could be studied. Between
these two sections a regime of resolved stellar photospheres occurs.

can go as deeply as 15th magnitude in K and 10th in V under good conditions without an
AO system (criterion 2). With an AO system plus laser guide star a visual magnitude of
nearly 13 could be attained. These magnitude limits should allow, for example, the imaging
of even M dwarfs (in V ) or AGN's (in K).
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