

Applying for Time at the CHARA Array

Douglas Gies

Director Center for High Angular Resolution Astronomy Georgia State University

www.chara.gsu.edu/observers/applying-for-chara-time

Outline

- NSF Midscale Innovation Program
- Resources to help you get started
- NOAO proposal process and 2018B CFP
- CHARA staff support
- VLTI proposals

Community Access to CHARA

- Initiating an open access program at CHARA that is supported by a NSF/MSIP award
- Community access to telescope time and a user-friendly database of archival data
- Time allocated through NOAO TAC:
 25 nights in 2018B (Aug Dec; due Mar 30)
- Providing 25 nights/semester over next 4 years
- About 2x oversubscribed in 2018A (Feb July)

- Practical Optical Interferometry: Imaging at Visible and Infrared Wavelengths, David Buscher & Malcolm Longair (\$32)
- Principles of Stellar Interferometry, Andreas Glindmann (\$169)
- Introduction to Optical Stellar Interferometry, Antoine Labeyrie, S. Lipson, & P.Nisenson (\$57)

Free Materials

Introduction to the theory of interferometry,
 C.A. Haniff
 http://paysoi.coltach.edu/workshop/2006/tolks/Haniff

http://nexsci.caltech.edu/workshop/2006/talks/Haniff_theory.pdf

- Optical Interferometry in Astronomy, John Monnier http://dept.astro.lsa.umich.edu/~monnier/Publications/ROP2003_ final.pdf
- Principles of Long Baseline Interferometry,
 P. Lawson et al.

https://ecommons.cornell.edu/handle/1813/41240

• CHARA Publications:

http://www.chara.gsu.edu/astronomers/publications Scientific, technical

<u>CHARA Website</u>

- <u>CHARA Paper</u>
- Instruments
- CHARA Community Access
- NOAO Proposal Information
- Schedules
- Observing Preparation
- Weather/Sky conditions
- Publications
- Map & Directions
- People

Time Available

In order to increase community awareness and support of optical interferometry, <u>CHARA has offered</u> nights for open-access through <u>NOAO</u>. The current count/status of open-access nights is shown in the following table.

2007B	2008A	2008B	2009A
-		-	-
2009B	2010A	2010B	2011A
-	5	-	5
2011B	2012A	2012B	2013A
	5		5

Center for High Angular Resolution Astronomy

The CHARA Array is located on Mount Wilson in the San Gabriel Mountains of Southern California. The Array utilizes the principles of optical and infrared interferometry to link its six 1-meter telescopes together to produce resolution equivalent to that of a single telescope more than 300 meters in diameter, making it the highest angular resolution optical telescope in the world. A complement of beam combiners offers interferometric capability in the range 0.5 to 2.5 microns. Multibeam combiners (up to six telescopes) support interferometric imaging.

Last updated or reviewed March 2, 2011.

LESIA

https://www.noao.edu/gateway/chara/

Kitt Peak National Observatory • Cerro Tololo Inter-American Observatory • NOAO Gemini Science Center

Community Access to the CHARA Interferometer on Mt. Wilson

NOAO and Georgia State University are announcing an opportunity for observations with the <u>Center for High</u> <u>Angular Resolution Astronomy</u> (CHARA) Array at <u>Mt. Wilson Observatory</u>. Twenty-five nights will be available during the 2018A observing semester (February 2017 - July 2018)

Requests should be submitted using the standard <u>NOAO proposal form</u> by selecting "CHARA" in the telescope list. Time should be requested in half-night increments, with a minimum allocation of 0.5 nights (about 5 hours). Observations will be carried out by CHARA staff, however, we encourage new observers to participate in making observations at Mt. Wilson observatory, and some travel support from GSU will be available on request for those who are awarded time.

What is the purpose of this call for proposals?

GSU/CHARA was awarded funding from the NSF Mid-Scale Innovations Program to provide community access to the CHARA observing program and data archive. This is intended to be an introductory opportunity, and previous experience with interferometry is not required. The number of available nights is expected to remain at about 25 per semester through semester 2021B.

CHARA capabilities and proposal preparation

The best way to study the capability of the instruments is to look over some of the science papers from the array. A bibliography of CHARA Array science is available: http://www.chara.gsu.edu/astronomers/publications/

The following table gives a high level view of the performance for the system and the most mature beam combiners. Please note that CHARA does not have offset tracking capability, and the science target must satisfy acquisition, tilt tracking, and beam combiner magnitude limits.

Mode	Telescopes	Band	Typical limit Mag=	Best performance Mag=	At Spectral Resolution R=
Acquisition	6	V-R	10.0	12.0	Broad band
Tilt tracking	6	V-R	10.0	12.0	Broad band
CLASSIC	2	H or K band	7.0	8.5	Broad band
CLIMB	3	H or K band	6.0	7.0	Broad band
JouFLU	2	K	4.5	5	Broad band
MIRC	6	Н	4	6	42
PAVO	2	630-900 nm	7.0	8.0	30
VEGA (hi-res)	2 or 3	2 bands of 7nm (separation 30nm) in 520-850nm	4.0	5.0	30000
VEGA (med-res)	2 or 3	2 bands of 35nm (separation 160nm) in 520-850nm	6.5	7.5	6000

Steve Ridgway (ridgway@noao.edu) is the NOAO point of contact for proposal preparation, and he can steer you to more expert advice as needed.

The 6 CHARA telescopes provide 15 baselines, listed here. Normally a two-telescope combiner can be used with any two telescopes (one baseline), a 3-telescope combiner with any 3 telescopes (3 baselines), etc. The selection of telescopes can be changed during the night, within some limitations, provided it is part of the observing request and plan - please inquire for more specific information.

If you decide to prepare a proposal, you will probably want to look at the optical interferometry planning tools supported by the NASA Exoplanet Science Institute at http://nexsciweb.ipac.caltech.edu/gcWeb/gcWeb.jsp

The Jean-Marie Mariotti Center in Grenoble offers an interferometry planning tool <u>Aspro</u> which supports CHARA instruments. The JMMC also offers <u>SearchCal</u>, for selecting calibrator stars.

There are no reserved targets or science, though proposers may optionally be put in contact with groups pursuing similar programs. NOAO policy on data proprietary period will apply. According to current CHARA consortium policy, "Members of the CHARA collaboration may participate as collaborators on NOAO proposals and be listed as such in the text of proposals (but not as P.I. or Co-I. on the cover sheet)."

How much time is needed for an observation?

A single "snapshot", including calibrators, requires ~30-90 minutes. This may produce between one and several dozen UV points, depending on the instrument. This amount of data can determine, for example, an angular diameter, a limb darkening strength, a binary separation, or the fraction of emission in a shell.

This may not be well suited for survey programs, for time variable studies, or for imaging of complex sources, which typically might require larger observing allocations.

The observations

CHARA cannot guarantee productive observations, but is prepared to devote more telescope time than the allocated total in order to increase the odds of success.

All observing will be done by CHARA consortium staff. Visitors are encouraged to travel to the Array - however, observation dates may not adhere to an advance schedule. P.I.'s can apply for travel support once the time allocation process is complete -- contact CHARA Array Director Dr Theo ten Brummelaar (theo@chara-array.org).

Data reduction and analysis

Consortium members will also support data reduction to Optical Interferometry FITS format, though users will probably find it interesting and not difficult to run the reduction suites, either on a CHARA computer, or on their own Linux or Mac systems. Visibility modeling tools are available from the Exoplanet Science Institute at http://nexsciweb.ipac.caltech.edu/vmt/vmtWeb/, and from the Jean-Marie Mariotti Center at http://www.jmmc.fr/litpro_page.htm.

A very complete bibliography of interferometry science is available at the OLBIN website, <u>http://jmmc.fr/bibdb/</u>, and may be the best guide for conventional ways to interpret data. However, optical interferometry is a young field and is wide open for new approaches.

2018B NOAO Call for Proposals

- 25 nights will be available during the 2018B observing semester (August December, 2018)
- CHARA will be closed for the month of January
- Request minimum increments of 1/2 night
- No restricted targets
- 18 month proprietary period
- Deadline March 30, 2018
- Next 2019A: February-July, 2019

NOAO Proposal Process

http://ast.noao.edu/observing/call-for-proposals-2018a

- Proposals can be prepared on-line, or with a LaTeX template and submitted via upload.
- An advantage of on-line preparation is that the proposal will remain in the system for several years, and can be updated and resubmitted easily.

NOAO Interactive Proposal Form

- Abstract: 175 words
- Scientific justification: 1 page
- Experimental design: 1 page
- Other Facilities: 1/2 page
- Previous NOAO time: 1/2 page
- Figures: 3
- Target tables

Tips on how to write a proposal

- Lecture from Stan Metchev http://www.astro.sunysb.edu/metchev/PHY517_ AST443/lecture6.pdf
- A sample proposal with in-line advice: https://www.noao.edu/noaoprop/help/sample.pdf

Advice from Steve Ridgway

• The biggest question in a TAC's mind (or whatever serves as a TAC mind) is, what can you do with the data, and will you do it.

The way to forestall concerns like that is to show with real or simulated data that you can carry out the post-observing work.

- No matter how carefully written, you can always make it a little more convincing next time.
- There is a funny effect individual TAC members may forget details of your proposal, but notice that it is familiar, and in my experience, this can result in a kind of favorable bias.
- Many TAC decisions are decided by one vote, and TAC membership evolves continuously.

bservatoire

• Therefore, if you believe in your proposal, then as Winston Churchill supposedly said, but did not say, but could have said: "Never give up – never, never, never!"

CHARA Collaborators

- CHARA staff can help you!
- "Members of the CHARA collaboration may participate as collaborators on NOAO proposals and be listed as such in the text of proposals (but not as P.I. or Co-I. on the cover sheet)."
- Note: this is a current CHARA rule, intended to support broader community access, while enabling PIs to benefit from CHARA collaborators if they wish.

bservatoire

CHARA Community Workshop 2017-10-08

								CH	ARA Arr	ay 2	2017B OI	oserving	Scł	nedule							
	Sunday Monday			ıy	Tuesday			Wednesday				Thursday			Frida	y		Saturd	ay		
							1	NOAO(C6)	S1W1E1	2	NOAO(C6)	S1W1E1	3	CL2 ENG	S1W1E1 S2	4	CL2	S1W1E1	5	CL1	S1W1E1
	6	NOAO(C7)	S1E1	7	NOAO(C7) J1	E2W2 S1S2	8	C1 J1	E1W1 S1S2	9	C1	S1W1E1	10	C1 ENG	S1W1E1 S2	11	C1	S1W1E1	12	NOAO (C5/P11)	ALL
August	13	NOAO (C5/P11)	ALL	14	C4 P6	ALL	15	C4 P6	ALL	16	M12	ALL	17	M12 ENG	ALL S2	18	M12	ALL	19	M1	ALL
Ā	20	M1	ALL	21	M14	ALL	22	M14	ALL	23	M14	ALL	24	V1 ENG	ALL S2	25	V1	ALL	26	V1	ALL
	27	V1	ALL	28	V1	ALL	29	V1	ALL	30	V1	ALL	31	NOAO(CL5) ENG	S1E2W1 S2	1	NOAO(CL5)	S1E2W1	2	NOAO(CL6)	S1W1E1 ALL
\vdash		NOAO(CL6)	S1W1E1		NOAO(CL6)	S1W1E1		NOAO(CL6)	S1W1E1		CL2	E1E2W1W2	_	CL2	52 S1W1E1		CL1	S1W1E1		C2(1/2) CL1	S1W1E1
	3	C2(1/2)	ALL	4	C2(1/2)	ALL	5	J1(1/2)	S1S2	6	J1	S1S2	7	P1	S2W2E2	8	P1	S2W2E2	9	P1	S2W2E2
mbe	10	V2	ALL	11	V2	ALL	12	V2	ALL	13	V2	ALL	14	V2 ENG	ALL TBD	15		ALL	16	V2	ALL
September	17	M12	ALL	18	M12	ALL	19	M12	ALL	20	M12	ALL	21	M11 ENG	ALL TBD	22	M11	ALL	23	M11	ALL
	24	M11	ALL	25	M11	ALL	26	M9	ALL	27	M9	ALL	28	M9 ENG	ALL TBD	29	M9	ALL	30	M9	ALL
	1	CL1	S1W1E1	2	CL2	S1W1E1	3	M10	ALL	4	M10	ALL	5	M10 ENG	ALL TBD	6	M10	ALL	7	M10	ALL
e	8	M10	ALL	9	M10	ALL	10	M10	ALL	11	V3	ALL	12	V3 ENG	ALL TBD	13	V3	ALL	14	V3	ALL
October	15	V3	ALL	16	V3	ALL	17	V3	ALL	18	P10 C1	S1S2 E1W1	19	C1 ENG	S1E1 TBD	20	C1	S1E1	21	ALOHA	ALL
°	22	ALOHA	ALL	23	ALOHA	ALL	24	M8 M15	ALL	25	M8	ALL	26	M8 M15	ALL ENG TBD	27	M8	ALL	28	C4 P6	ALL
	29	C4 P6	ALL	30	M15	ALL	31	NOAO (C5/P11)	ALL	1	M3	ALL	2	M3 ENG	ALL TBD	3	M3	ALL	4	M3	ALL
	5	V4	ALL	6	V4	ALL	7	V4	ALL	8	V4	ALL	9	V4 ENG	ALL TBD	10	V4	ALL	11	V4	ALL
Novembe	12	V8	S1S2E1E2	13	M13	ALL	14	M7	ALL	15	M13	ALL	16	M15 ENG	ALL TBD	17		ALL	18	M1	ALL
Nove	19		ALL	20	CL4 P3	ALL ANY	21	CL4 P3	ALL ANY	22	P9	ALL	23			24	P9	ALL	25	P9	ALL
	26	P7 J1	E2W1W2 S1S2	27	P7 J1	E2W1W2 S1S2	28	P7 J1	E2W1W2 S1S2	29	P1 CL2	S2W2E2 S1W1E1	30	P1 NOAO(C6)	S2W2E2 S1W1E1	1	P1 NOAO(C6)	S2W2E2 S1W1E1	2	P1 NOAO(C7)	S2W2E2 S1W1E1
\vdash	3	P1 NOAO(C7)	S2W2E2 S1W1E1	4	V5	ALL	5	V5	ALL	6	V5	ALL	7	V5 ENG	ALL	8	V5	ALL	9	V5	ALL
nber	10	V5	ALL	11	M7	ALL	12	M11	ALL	13	M11	ALL	14	M11 ENG	ALL	15	M11	ALL	16	M11	ALL
December	17	CL3/P5 J2	ALL	18	CL3/P5 J2	ALL	19	CL3/P5 J2	ALL	20	P2 CL2	S2W2E2 S1W1E1	21	P2 CL2	S2W2E2 S1W1E1	22	P4 J1	E1E2W1W2 S1S2	23	P4	E1E2W1W2
	24			25			26			27			28			29			30		
	31																			Olli	Norm Chris

		CHARA Array 2017E	Observing Proposal Summary			
Program Number	РІ	Co-l's	Title	Dates Assigned		
ARA Classic Progra	ams					
C1	Kervella	Merand, Trahin, Borginet, Gallenne, Nardetto	Completion of the CHARA/VLTI Interferometric Cepheid Survey in a view of GAIA's Parallaxes	Aug 8-11, Oct 18-20		
C2	Kishimoto	ten Brummelaar, Farrington, Anderson	Resolving the nature of the AGN Torus	Sept 2-4 (2nd half)		
C4/P6	Boyajian/von Braun	Ellis, ten Brummelaar, Farrington, McAlister, Gies, van Belle, R. White, Jones, Ireland, Huber, Fischer	Diameters and temperatures of Main-Sequence FG Stars	Aug 14-15, Oct 28-29		
NOAO(C5/P11)	von Braun	Boyajian, van Belle, Ellis	Radii of late-type dwarfs, exoplanet hosts, and exoplanet host candidates	Aug 12-13, Oct 31		
NOAO(C6)	Kaminski		Stellar Radii of M-dwarfs	Aug 1-2, Nov 30-Dec1		
NOAO(C7)	Baines	Zielenski, Vanko, Niedzielski, Wolszczan	Measuring Candidate Exoplanet Host Star Radii	Aug 6-7, Dec 2-3		
IMB Programs						
CL1	Farrington	ten Brummelaar, Mason, Schaefer, Gies, Fekel	Long Term Monitoring of Massive and SFP Binaries	Aug 5, Sept 8-9, Oct 1		
CL2	Lester	Farrington, Gies, Schaefer	Astrophysical Parameters for A- and F-type Stars in Spectroscopic Binaries	Aug 3-4, Sept 6-7, Oct 2, Nov 29, 20-21		
CL3/P5/J2	Baron	Ireland, Casagrande, Huber, ten Brummelaar, Boyajian	PAVO vs JOUFLU vs CLIMB: Stellar diameters and systematic errors	Dec 17-19		
CL4/P9	White	Huber, Baron, Vrijmoet, Ireland, Tuthill, Bedding, Aufdenberg, Baines, Collet, Neilson	Measuring limb-darkening at visible wavelengths with CHARA	Nov 20-21		
NOAO(CL5)	Richardson	Moffat, Williams, Shenar, St-Louis	Weighing Evolved Massive Stars in Binary Systems with Interferometry	Aug 31-Sept 1		
NOAO(CL6)	Leutenegger	Cohen, Gagne, Sana	Search for long period companions of putatively single X-ray emitting WR stars	Sept 2-5 (1st half)		
UFLU Programs						
ALOHA	Reynaud	Ludovic Grossard MC	ALOHA @ 1.55 and 3.39 microns	Oct 21-23		
J1	Scott	ten Brummelaar, Mennesson, Nunez, Coude du Foresto, Absil	Monitoring of Known Variable Exozodiacial Disks	Aug 7-8, Sept 5-6, Nov 26-28, Dec		
		Ireland, Casagrande, Huber, ten Brummelaar,	PAVO vs JOUFLU vs CLIMB: Stellar diameters and systematic errors	Dec 17-19		

Observing at CHARA http://www.chara.gsu.edu/observers

- Contact CHARA staff to help design program and set optical configurations
- Plan to visit MWO to help with observations (travel support available) OR be available for live Skype session with operators/astronomers
- VEGA programs merged
- CHARA archive will soon be available
- Data reduction and analysis packages available
- Journal of past observations at JMMC: http://oidb.jmmc.fr/index.html

Key Contacts

proposals, pre- and post-observing

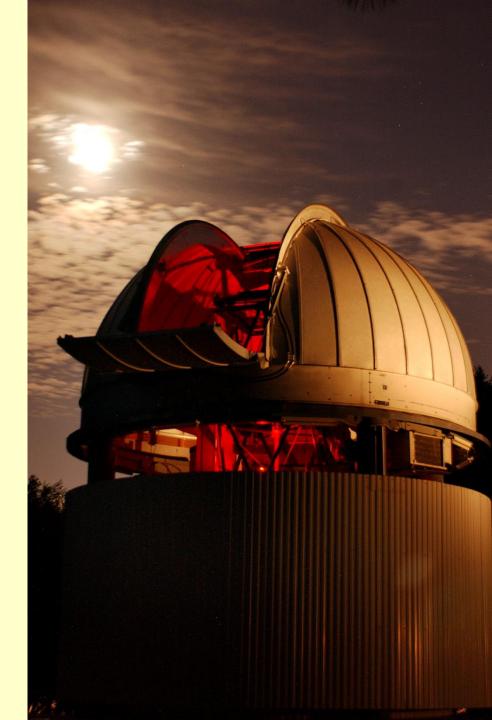
- Gail Schaefer CHARA Visitor Support Scientist schaefer@chara-array.org
- Jeremy Jones CHARA Data Scientist jones@chara.gsu.edu
- Steve Ridgway CHARA/NOAO Liason ridgway@noao.edu

VLTI Proposal Submissions

- Bi-annual call-for-proposals
- https://www.eso.org/sci/facilities/paranal/cfp/cfp101.html
- Proposals due end of March 2018 → observation Oct. 2018/March 2019
- ATs = 4 movable 1.8m telescopes
- UTs = 4 fixed 8m telescopes (add + 2mag)
- Combiners: AMBER (3T, H+K), GRAVITY (4T, K) PIONIER (4T, H)
- Helpful to have a European collaborator

ESO non-member state proposal

- If at least 2/3 of the applicants are not affiliated to ESO member institutes, the following apply:
- The proposal has to be scientifically outstanding.
- The required instrumentation is not available at any other observatory accessible to the applicants.
- If similar proposals of ESO members states are rated equally, preference will be given to those.
- ESO will only grant financial support to astronomers affiliated to ESO member institutes.



CHARA Research Sponsored by National Science Foundation GSU College of Arts & Sciences plus resources obtained by the CHARA Collaboration Members

<><><><><><><><><>

www.chara.gsu.edu

