Observing Strategies and Planning Software

Gail Schaefer

The CHARA Array of Georgia State University

Mount Wilson, CA

With contributions from: Laurent Bourgès and Christopher Farrington

- Selecting a Beam Combiner
- Selecting Telescopes and Baselines
- Selecting Calibrator Stars
- Selecting Delay Settings (POP Configuration)
- Time Needed for Observations

Combiner	Num Tel.	Band	Typical Mag	Best Mag	Spec. Res.	Advantages	
CLASSIC	2T	H or K	7.0	8.5	Broad	Sensitivity	
CLIMB	3T	H or K	6.0	7.0	Broad	Sensitivity	
JouFlu	2T	К	4.5	5.0	Broad	Precision	
MIRC	6T	н	4.5	6.0	40	Imaging	
PAVO	2T	630-900 nm	7.0	8.0	30	Sensitivity	
VEGA – HiRes	2-3T	2 bands (7nm) in 480-850 nm	4.0	5.0	30000	Spectral Res	
VEGA – MedR	2-3T	2 bands (35 nm) in 480-850 nm	6.5	7.5	6000	Spectral Res	

Limit for acquisition and tiptilt tracking: V = 10-12 mag

Telescopes and Baselines

	Baseline	Length (m)
50-inch telesenne	E1-S1	331
Half-million-galle S1	W1-E1	314
	E1-S2	302
100-inch telescope	E2-S1	279
Control/Office Exhibit Building Beam Combining Lab MI. Wilson Observatory Museum	W1-S1	279
Site Manager's Residence	W1-E2	251
	W1-S2	249
W2 Light pipes to W1	E2-S2	248
CHARA Beam Synthesis Facility	W2-S1	211
Engineering Shop	W2-E1	222
E2	W2-S2	177
Six CHABA Array	W2-E2	156
1-meter telescopes CHARA Array of Georgia State University CHARA Array of Georgia State University	W2-W1	108
CHARA facilities are indicated with a bold outline	E2-E1	66
	S2-S1	34
GeorgiaStateUniversity		THE AVAZUR EXERTER

Selecting Beam Combiner and Baselines

- Angular Resolution: $0.5 \lambda / B$
 - 0.66 mas in K-band (2.13 μ m)
 - 0.52 mas in H-band (1.67 μ m)
 - 0.20 mas in visible at 650 nm
- Simple diameter:

GeorgiaStateUniver

- Single baseline (two telescopes)
- Imaging complex sources: Rapid rotators, binaries, stellar surfaces
 - Multiple baseline projections
 - Sample beyond the first null (at 1.22 λ /B)

- Broad-band
 - Higher sensitivity for faint objects
 - Bandwidth smearing
- Spectrally dispersed visibilities
 - Increase u,v sampling by measuring fringes in different wavelength channels
 - Emission/absorption line studies
- Coherence length (width of fringe packet)
 - Sets the interferometric field of view

- Unresolved point source:
 - Visibility = 1.0
- However, instrumental and atmospheric effects will cause a loss in coherence, causing a drop in the measured visibility.
- Observe unresolved calibrator stars to define the true visibility of the target.

- I ESIA

- Unresolved stars or stars with a known angular diameter.
- Within 5-10 degrees on the sky from the science target.
- Within 1-2 mag in brightness from science target and similar in color.
- Avoid binary stars, rapid rotators, emission line stars.
- Minimum of two calibrators per object, three is better.
 - Discovery of unknown binaries

- SearchCal developed by JMMC
 - http://www.jmmc.fr/searchcal_page.htm
- getCal developed by NexSci
 - http://nexsciweb.ipac.caltech.edu/gcWeb/gcWeb.jsp

SearchCal

SearchCal [c1]									000					
File Edit Query Calibrators Interop Help														
Query Parameters														
1) Instrumental Configuration 2) Science Object 3) SearchCal Parameters														
Magnitude Band : H														
Wavelength (II) [um] : 1.65 BA 2000 [hb:mm:sc] : [08 20.03 86158 Max. Magnitude (H) : 5.0														
	May Paceling (1) (1) (100 0 DEC 2000 [4/dd mm:se] + 173 (3 27 0.5 cm										0 - • •			
Manifuda (l) : 300.0 Scenario : Bright										Faint				
				Magnitt	ude (H) :	3.942				RA Ra	ange [mn]	: 240.0		
	DEC Range [deg] : 20.0													
Prog	Progress : Get Calibrators													
Enund Calibrators (2001 sources, 1826 filtered)														
Index	dist	HD	BAI2000	DEI2000	vic2		UD V	LIP	н	UD K	SnTvne	V	н	K
1	5.21E-6	69897	08 20 03 8602	+27 13 03 7380	0.374	0.701	0.662	00	0.686	0.689	F6V	5.13	3.942	3.868
2	2,975	67542	08 09 35,1816	+29 05 35.0772	0.622	0.503	0.468		0.488	0.49	GOII	6.47	4.699	4.621
3	3.383	67544	08 09 24.8645	+24 49 34.0716	0.619	0.509	0.468		0.49	0.493	G8III	7.29	4.966	4.908
4	3.595	71730	08 29 40.0634	+24 20 40.9452	0.581	0.542	0.496		0.52	0.523	KOIII	7.05	4.872	4.81
5	3.977	73080	08 37 22.1112	+281739.8328	0.554	0.555	0.52	(0.541	0.543	G5	6.63	4.702	4.591
6	4.945		08 10 54.7320	+22 43 43.1904	0.514	0.588	0.548	(0.573	0.575	K0	8.026	4.909	4.698
7	6.121	<u>65471</u>	07 59 42.6055	+23 10 58.4652	0.506	0.594	0.554	(0.579	0.581	KO	6.92	4.73	4.562
8	6.902	<u>75216</u>	08 49 45.3118	+29 26 55.9824	0.534	0.581	0.529	(0.557	0.561	K2III	7.38	4.868	4.712
9	7.14	<u>63138</u>	07 48 28.8108	+28 45 51.2748	0.519	0.592	0.542	(0.568	0.572	KOIII	6.86	4.694	4.605
10	7.303	75646	08 52 00.4543	+25 43 07.1004	0.568	0.553	0.504		0.53	0.534	K2III	7.54	4.983	4.834
11	7.524		08 52 09.6634	+29 51 13.3848	0.515	0.588	0.548	(0.572	0.5/5	K0	7.08	4./42	4.631
12	7.6//	75702	08 32 54.2333	+ 34 23 03.2748	0.544	0.565	0.524	(0.549	0.552	K2	7.52	4.934	4.798
13	7.731	74109	08 53 00.0972	+29 57 41.5290	0.564	0.549	0.509		1.533	0.530	K∠	7.35	4.982	4.813
14	7.809	64092	07 53 01 0094	+22 20 04 3116	0.774	0.500	0.531	(1.538	0.562	KU	7.05	4.700	4.056
16	7.845	04002	08 03 34 1340	+20 20 18.6972	0.599	0.519	0.486		0.506	0.508	65	7.03	4.836	4.742
17	8.769	67482	08 09 39.7601	+35 42 08.5032	0.58	0.535	0.498		0.52	0.523	KO	7.3	4.952	4.839
18	8.815	64602	07 56 01.9399	+34 22 10.4160	0.572	0.541	0.505	(0.527	0.53	К0	7.57	4.972	4.827
19	8.917		07 48 06.8957	+32 51 25.0308	0.557	0.552	0.518	(0.539	0.541	G5	7.204	4.952	4.548
20	10.159	<u>60204</u>	07 34 31.5922	+28 41 11.6808	0.519	0.583	0.547	(0.569	0.571	G5	6.66	4.605	4.498
21	10.402	<u>77694</u>	09 04 51.4817	+24 36 18.5040	0.561	0.559	0.509	(0.536	0.539	K2III	7.8	4.982	4.838 -
	•													
Filters														
🗌 Reje	ect stars f	arther th	ian : Maximum I	RA Separation (m	n): 10.0		Ма	ximu	IM DE	C Separat	ion (degre	ee): 10	.0	
🗌 Reje	ect stars w	ith mag	nitude: below	: 0.0			а	nd a	bove	: 10.0				
🗌 Rej	ect Spectra	al Types	(and unknowns)	:							v 0 v	B 🗹 A	🖌 F 🔽 G	i 🗌 К 🗌 М
Rej	ect Lumino	sity Clas	ses (and unkno	wns):							I		III 🗹 IV	V 🗹 V 🗹 VI
🗹 Rej	ect Visiblit	y below	: vis2: 0.5											
🗌 Reje	ect Visibilit	ty Accura	icy above (or unl	known): vis2Err	/vis2 (%)	: 2.0								
Rej	ect Variabi	lity												
🖌 Reje	ect Multipl	icity												
🖌 Reje	ect Invalid	Object T	ypes											
☑ Diameter quality : Maximum chi square : 2.0 Maximum relative error (%) : 10.0														
Searching calibrators done.														

- ASPRO2 developed by JMMC
 - http://www.jmmc.fr/aspro_page.htm
- CHARA_PLAN2 developed by CHARA
 - http://www.astro.gsu.edu/~theo/chara_reduction/index.html

How much time is needed?

- Calibration Strategies:
 - $Cal1 Obj Cal2 Obj Cal1 \dots$
 - $Cal1 Obj Cal2 Cal1 Obj Cal2 \dots$
- Time to collect data on single object (star acq. + data)
 - Seeing and brightness dependent
 - Fast instruments (CLASSIC, CLIMB, PAVO, JouFlu):

l'Observatoire LESIA

- 5 10 minutes
- VEGA: 5 20 minutes
- MIRC: 45 60 minutes

GeorgiaStateUniversity

Cal-Sci-Cal will take between 30 – 120 min

- Diameters Several brackets of data per baseline on two separate nights.
- Binaries Minimum of three brackets or observations on at least three baselines.
- Imaging Many brackets on multiple baselines during the night to fill in the sky coverage.

GeorgiaStateUnive

- Query and download data (OIFITS)
- CHARA observation logs for Classic, CLIMB, VEGA only

	O · · · · · · · · · · · · · ·
♥Filters	
Position: GJ 581 Radius: 2 💭 arcmin y Date of observation: after YYYY-MM-DD 🗎 before YYYY-MM-	DD
Instrument: Any Instrument • Wavelength range: any value • Data reduction level: @L0, @L1, @L2, @L3. Availability: Public @Rest	tricted •All
25 • rows max. per page, sorted by Instrument • descending. Q Search	Reset C

Results

Meta-data will try to follow VO40I proposal and Ivoa:ObsCore document (get metadata description in the associated doc) 33 observations from 1 oifits files (0 private)

Page 1 / 2 Next Last

Results for

SELECT ALL * FROM oidb AS t WHERE (CONTAINS(POINT('ICRS', t.s_ra, t.s_dec), CIRCLE('ICRS', 229.8617625, -7.7222806, 0.03333333333333333333))=1) ORDER BY instrument

٥	target_name	access_url	t_min	instrument_name -	wlen_min	wlen_max	nb_channels	datapi
٥	HIP_74995	-	2008-05-16T09:38:52	CLASSIC	1.96000000	2.31000000	-	Baines 🐱
۵	HIP_74995	-	2010-03-30T08:09:35	CLASSIC	1.53000000	1.82000000	-	Boyajian 🔀
٥	HIP_74995	-	2010-03-30T08:31:12	CLASSIC	1.53000000	1.82000000	-	Boyajian 🔀
٥	HIP_74995	-	2010-03-30T09:44:38	CLASSIC	1.53000000	1.82000000	-	Boyajian 🔀
٥	HIP_74995	-	2010-03-30T10:13:26	CLASSIC	1.53000000	1.82000000	-	Boyajian 🔀

http://oidb.jmmc.fr/index.html

- Observations will be carried out by CHARA staff
- Visitors are encouraged to travel to the Array to participate in the observations
 - Real-time input from PI on decisions that could impact the science objectives and priorities

- Exoplanet host star: 55 Cnc
 - V = 5.6 mag, K=4.0 mag
 - $\theta = 0.71 \text{ mas}$
 - CLASSIC H/K-band, 2T combiner
 - Baselines longer than 250 m (ang res ~ 0.69 mas at H)
- Asteroseismic target: HD 182736
 - Subgiant showing solar-like oscillations
 - V = 7.0 mag, K = 5.0 mag
 - $\theta = 0.44 \text{ mas}$

GeorgiaStateUniversit

- PAVO R-band, 2T combiner
- Baselines longer than 150 m (ang res ~ 0.43 mas at R)

(von Braun et al. 2012)

(Huber et al. 2012)

EXETER

l'Observatoire LESIA

- CLIMB H/K-band, 3T combiner [2D coverage, faint target]
- Inner triangle (S2-E2-W2), baselines 140-250 m (~ 0.7 mas)
- Faint Cepheid companion V1334 Cyg (Gallenne et al. 2015)
 - V = 5.9 mag, H=4.7 mag, K = 4.5 mag
 - sep ~ 8 mas, flux ratio ~ 3.1%
 - MIRC H-band, 6T combiner

GeorgiaStateUniversity

- All 15 baselines 34-331 m [high precision closure phases!]

EXETER

- 8 spectral channels [longer coherence length]

l'Observatoire LESIA

- V = 4.3 mag, H = 1.8 mag
- $\theta = 2.4 \text{ mas}$

GeorgiaStateUniversit

- MIRC H-band, 6T combiner [Good uv coverage on sky]

Observatoire LESIA

- All 15 baselines (34-331 m)
- Sample 2nd lobe in visibility curve!

Guide to planning observations available on the CHARA website:

http://www.chara.gsu.edu/observers/planning-an-observation

