Milliarcsecond Astronomy with the CHARA Array

Gail Schaefer

The CHARA Array of Georgia State University

Mount Wilson, CA

CHARA Community Workshop

Schedule		
Stellar Astrophysics at High Angular Resolution	Gail Schaefer	2:00 – 2:45 pm
Overview of the CHARA Array and Applying for Time	Douglas Gies	2:45 – 3:30 pm
Break		
Planning Observations and Software Tools (laptops)	Gail Schaefer	3:45 – 4:30 pm
Open Discussion	All	4:30 – 5:00 pm

Thanks to William Cochran and Kelly Quinney for hosting us!

Long Baseline Optical/Infrared Interferometers

CHARA Array - Mount Wilson, CA

NPOI - Anderson Mesa, AZ

MROI - Magdalena Ridge, NM (under construction)

VLTI - Paranal, Chile

- Amplitude of fringes = Visibility
 - Point Source: V = 1.0
 - Resolved source: loss of coherence reduces fringe visibility
 - Measures the size and geometry of source

Fringe Visibility

- The visibility is the Fourier Transform of the brightness distribution
- Analytic functions for simple geometries
- Berger & Segransan "Introduction to visibility modeling" 2007, New Ast Rev, 51, 576

size and structure of source

size and structure of source

Closure Phase

Monnier, "Phases in Interferometry" 2007, New Ast Rev, 51, 604

- Atmosphere corrupts phase information at vis/IR wavelengths
- Closure phase (3 or more telescopes):

$$- CP = \Phi_{12} + \Phi_{23} + \Phi_{31}$$

- Cancels atmospheric effects
- Point symmetric object will have closure phase of 0° or 180°
- Measures asymmetries in source distribution

-200

Spatial Frequency (MA)

- Drop in visibility across emission line
 - variation in size and flux ratio between star and disk
- "S" shaped profile in differential phase
 - photo-center shift across wavelength channels

- Visibility amplitude
 - size and structure of source
- Closure phase
 - asymmetries in source distribution
- Differential visibilities and phases
 - emission lines
 - velocity structure

Interferometer baseline projected on to plane of sky

- Interferometer baseline projected on to plane of sky
- Position angle and projected baseline length will change as the earth rotates

- Comparison of R, T_{eff}, L with evolutionary models
 - Masses and ages of stars
- Age of the Ursa Major moving group: 414 ± 23 Myr
 - Diameters of A-stars (Jones et al. 2015)

Exoplanet Host Stars

- Age and mass of host star
- Size of habitable zones
 - L, Teff
- Physical parameters of planets
 - Radius of transiting planets

Oscillation power spectrum $\langle v_{nl} \rangle$: frequency separation of modes v_{max} : frequency of maximum power

Oscillation power spectrum $<v_{nl}>$: frequency separation of modes v_{max} : frequency of maximum power Test asteroseismic scaling relations for main sequence stars Huber et al. (2012)

Asteroseismology: Transiting Exoplanet Survey Satellite

- TESS Input Catalog
 - 596 million objects
 - 200,000 400,000 selected for high cadence
- Two-year mission
- Launched on April 18, 2018

- V < 7 mag
 - 4,864 stars resolvable ($\theta > 0.2$ mas)

Image credit: NASA

- V < 8 mag
 - 13,922 stars resolvable ($\theta > 0.2$ mas)

- Radial velocity and angular diameter variation over pulsational phase
- Calibration of Baade-Wesselink technique pulsation parallaxes
- Simultaneously fit photometry, spectroscopy, interferometry (Merand et al. 2015)
 - Mitigate systematics in projection factor
 - 2% accuracy on radius and distance

Rapid Rotators

- Oblateness
- Gravity darkening

$$- T_{eff} \sim g^{\beta}$$

Rapid Rotators

- Oblateness
- Gravity darkening
 - $T_{eff} \sim g^{\beta}$
 - von Zeipel model: $\beta = 0.25$
 - empirically derived $\beta = 0.19$

- High contrast companions
 - Separations 0.5 50 mas
 - $\Delta H < 6 mag$
 - Cepheids companions Gallenne et al. 2013, 2015
 - RS CVn companions Roettenbacher et al. 2015a, 2015b

Beta Lyrae

P = 13 daysa = 0.87 mas

• Thick disk around mass gainer - elongated

Zhao et al. (2008)

Kloppenborg et al. (2015)

- Rapidly rotating B-type stars that eject gas into a circumstellar disk
- Geometry and physical structure of disks
- Kinematics
- Size vs. wavelength
- Investigate variability over time

Gies et al. (2007)

Kinematics of Be Star Disks

Mourard et al. 2015

- Role of binarity in Be stars past mass transfer events?
 - Spun up secondary orbiting stripped down remnant companion (neutron star, white dwarf, helium star)
 - High contrast at close separations

Classical Nova

- Material from close binary companion accretes onto surface of white dwarf
- When pressure and temperature of accreted material reach a critical level, ignites in a thermonuclear runaway
- Expansion velocities of 500 – 3000 km/s

Looking Toward the Future...

JMMC Stellar Diameter Catalog

DEC > -20° V < 8 mag θ > 0.2 mas

Nstar = 18,147

Imaging = 9,781

Looking Toward the Future...

JMMC Stellar Diameter Catalog

DEC > -20° H < 8 mag θ > 0.5 mas

Nstar = 19,116

Imaging = 3,558

- CHARA Array can resolve sizes of stars across the HR Diagram
- Improving our understanding of stellar structure and evolution
 - Stellar radius, effective temperature, dynamical masses
 - Limb darkening, gravity darkening
 - Rotation
 - Starspots
 - Mass loss
 - Convection
- Community access time
 - 50 nights available per year
 - NOAO proposals due in September and March