## Planning Observations, Data Access, and Software Tools



#### Gail Schaefer

The CHARA Array of Georgia State University

Mount Wilson, CA

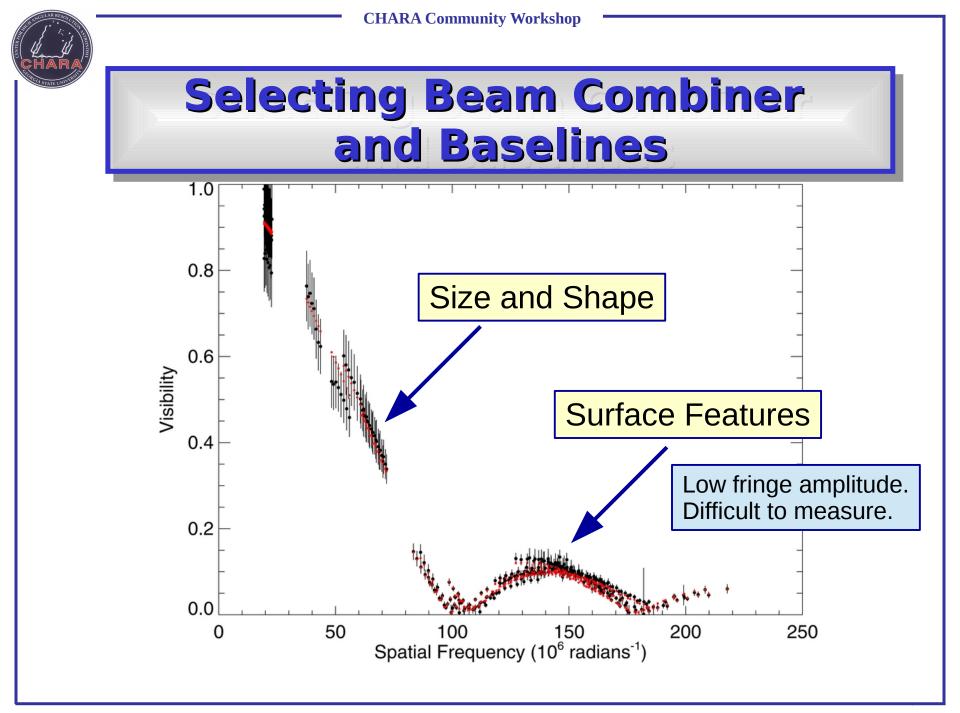
With contributions from: Fabien Baron, Laurent Bourgès, Christopher Farrington, and Jeremy Jones



| Combiner     | Combiner Num Band |                                  | Typical<br>Mag | Best<br>Mag | Spec.<br>Res. | Science                             |
|--------------|-------------------|----------------------------------|----------------|-------------|---------------|-------------------------------------|
| CLASSIC      | 2T                | H or K                           | 7.0            | 8.5         | Broad         | Diameters                           |
| CLIMB        | 3T                | H or K                           | 6.0            | 7.0         | Broad         | Binaries, disks                     |
| JouFlu       | 2T                | К                                | 4.5            | 5.0         | Broad         | Diam, precision                     |
| MIRC         | 6T                | Н                                | 5.0            | 6.0         | 40            | Stellar imaging,<br>binaries, disks |
| PAVO         | 2T                | 630-900 nm                       | 7.0            | 8.0         | 30            | Diameters                           |
| VEGA – HiRes | 2-4T              | 2 bands (7nm)<br>in 480-850 nm   | 4.0            | 5.0         | 30000         | Spectral studies                    |
| VEGA – MedR  | 2-4T              | 2 bands (35 nm)<br>in 480-850 nm | 6.5            | 7.5         | 6000          | Spectral studies, diam.             |

Limit for acquisition and tiptilt tracking: V = 10-12 mag

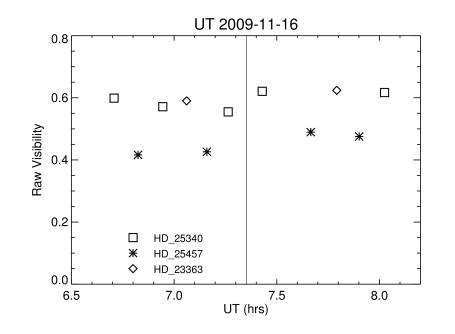
## **Telescopes and Baselines**


S2-S1

34

|                                                                                        | Baseline | Length (m) |
|----------------------------------------------------------------------------------------|----------|------------|
| 60-inch telescope                                                                      | E1-S1    | 331        |
| Half-million-gallc S1                                                                  | W1-E1    | 314        |
|                                                                                        | E1-S2    | 302        |
| 100-inch telescope                                                                     | E2-S1    | 279        |
| Control/Office<br>Exhibit Building Beam Combining Lab MI. Wilson Observatory<br>Museum | W1-S1    | 279        |
| Site Manager's<br>Residence                                                            | W1-E2    | 251        |
|                                                                                        | W1-S2    | 249        |
| W2 Light pipes to central facility W1                                                  | E2-S2    | 248        |
| CHARA Beam<br>Synthesis Facility                                                       | W2-S1    | 211        |
| Engineering Shop                                                                       | W2-E1    | 222        |
| E1 E2                                                                                  | W2-S2    | 177        |
|                                                                                        | W2-E2    | 156        |
| Six CHARA Array<br>1-meter telescopes<br>CHARA Array of Georgia State University       | W2-W1    | 108        |
| CHARA facilities are indicated with a bold outline                                     | E2-E1    | 66         |




- Angular Resolution on Longest Baseline: 0.5  $\lambda$  /B
  - 0.66 mas in K-band (2.13  $\mu$ m)
  - 0.52 mas in H-band (1.67 μm)
  - 0.20 mas in visible at 650 nm
- Resolving stellar diameters
  - Select baseline that can resolve target star
- Imaging stellar surface features
  - Sample beyond the first null (at 1.22  $\lambda$ /B)





- Stellar diameter:
  - One or two baselines
- Binaries
  - Three or more telescopes
  - (perpendicular baselines, closure phase)
- Imaging stellar surfaces, circumstellar disks
  - Multiple baseline projections (all 6 telescopes)





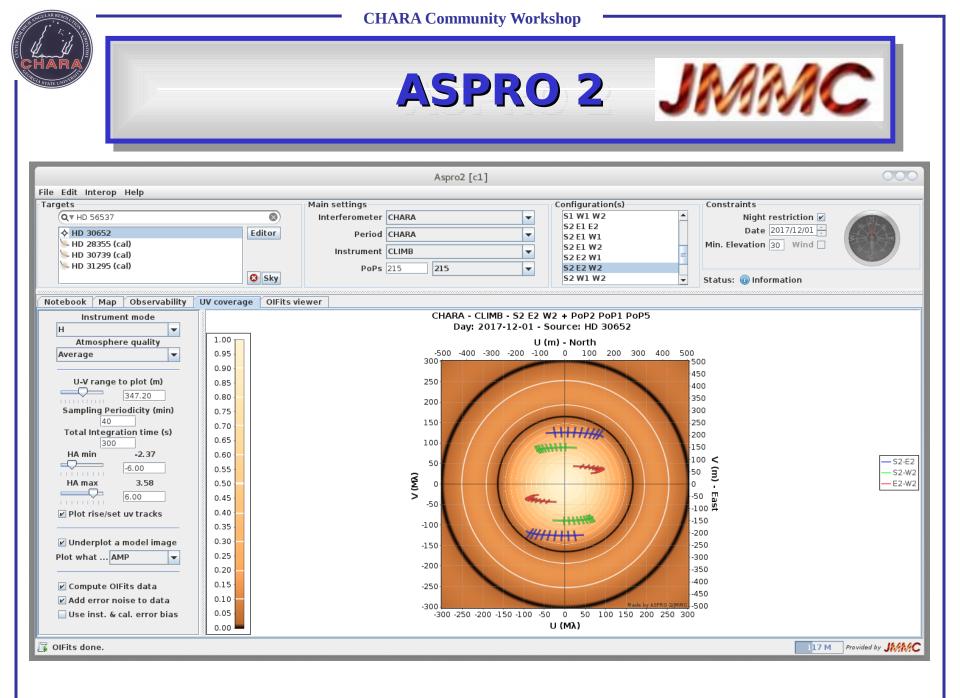
- Instrumental and atmospheric effects will cause a loss in coherence, causing a drop in the measured visibility.
- Observe unresolved calibrator stars to define the true visibility of the target.
  - Within 5-10 degrees on sky
  - Within 1-2 mag in brightness

#### Selecting Calibrators: SearchCal

| JMMC |  |
|------|--|
|      |  |

#### www.jmmc.fr/searchcal\_page.htm

| SearchCal [c1]                                                                          |                  |                       |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
|-----------------------------------------------------------------------------------------|------------------|-----------------------|--------------------------------|----------------------------------|-------------|-------|---------------|-----------|--------------|---------------------|---------------|----------------|----------------|----|
| File Edit Query Calibrators Interop Help                                                |                  |                       |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
| Query Parameters                                                                        |                  |                       |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
| 1) Instrumental Configuration 2) Science Object 3) SearchCal Parameters                 |                  |                       |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
| Magnitude Band : H 🔍 Name : 🔍 🕫 HD 69897 🛞 Min. Magnitude (H) : 3.0                     |                  |                       |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
| Wavelength (Η) [μm] : 1.65 RA 2000 [hh:mm:ss] : 08 20 03.86158 Max. Magnitude (Η) : 5.0 |                  |                       |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
| Max. Baseline [m] : 300.0 DEC 2000 [+/-dd:mm:ss] : +27 13 03.7416 Scenario :            |                  |                       |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
| Magnitude (H) : 3 942                                                                   |                  |                       |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
| RA Range [mn] : 240.0<br>DEC Range [deg] : 20.0                                         |                  |                       |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
|                                                                                         |                  |                       |                                |                                  |             |       |               |           | DEC Ra       | nge [deg]           | : 20.0        |                |                |    |
| Progress : Get Calibrators                                                              |                  |                       |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
| r Found Calibrators (2041 sources, 1826 filtered)                                       |                  |                       |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
| Index                                                                                   | dist⊥            | HD                    | RAI2000                        | DEI2000                          | vis2        | LDD   | UD V          | UD H      | UD K         | SpType              | V             | н              | К              |    |
| 1                                                                                       | 5.21E-6          | <u>69897</u>          | 08 20 03.8602                  | +27 13 03.7380                   | 0.374       | 0.701 | 0.662         | 0.68      | 0.689        | F6V                 | 5.13          | 3.942          | 3.868          |    |
| 2                                                                                       | 2.975            | <u>67542</u>          | 08 09 35.1816                  | +29 05 35.0772                   | 0.622       | 0.503 | 0.468         | 0.48      |              | GOII                | 6.47          | 4.699          | 4.621          |    |
| 3                                                                                       | 3.383            | <u>67544</u>          | 08 09 24.8645                  | +24 49 34.0716                   | 0.619       | 0.509 | 0.468         | 0.4       |              | G8III               | 7.29          | 4.966          | 4.908          |    |
| 4                                                                                       | 3.595            | 71730                 | 08 29 40.0634                  | +24 20 40.9452                   | 0.581       | 0.542 | 0.496         | 0.5       |              | KOIII               | 7.05          | 4.872          | 4.81           |    |
| 5<br>6                                                                                  | 3.977<br>4.945   | 73080                 | 08 37 22.1112<br>08 10 54.7320 | +28 17 39.8328<br>+22 43 43.1904 | 0.554       | 0.555 | 0.52<br>0.548 | 0.54      |              | G5<br>K0            | 6.63<br>8.026 | 4.702<br>4.909 | 4.591<br>4.698 |    |
| 7                                                                                       | 6.121            | 65471                 | 07 59 42.6055                  | +23 10 58.4652                   | 0.506       | 0.594 | 0.548         | 0.57      |              | KO                  | 6.92          | 4.73           | 4.562          |    |
| 8                                                                                       | 6,902            | 75216                 | 08 49 45.3118                  | +29 26 55.9824                   | 0.534       | 0.581 | 0.529         | 0.55      |              | K2III               | 7.38          | 4.868          | 4.712          |    |
| 9                                                                                       | 7.14             | 63138                 | 07 48 28.8108                  | +28 45 51.2748                   | 0.519       | 0.592 | 0.542         | 0.56      |              | KOIII               | 6.86          | 4.694          | 4.605          |    |
| 10                                                                                      | 7.303            | <u>75646</u>          | 08 52 00.4543                  | +25 43 07.1004                   | 0.568       | 0.553 | 0.504         | 0.5       |              | K2III               | 7.54          | 4.983          | 4.834          |    |
| 11                                                                                      | 7.524            |                       | 08 52 09.6634                  | +29 51 13.3848                   | 0.515       | 0.588 | 0.548         | 0.57      |              | K0                  | 7.08          | 4.742          | 4.631          |    |
| 12                                                                                      | 7.677            | 75 700                | 08 32 54.2333                  | +34 23 03.2748                   | 0.544       | 0.565 | 0.524         | 0.54      |              | K2                  | 7.52          | 4.934          | 4.798          |    |
| 13<br>14                                                                                | 7.731            | 75783<br>74198        | 08 53 00.0972                  | +29 57 41.5296<br>+21 28 06.6000 | 0.564       | 0.549 | 0.509         | 0.53      |              | K2<br>A1IV          | 7.35<br>4.66  | 4.982<br>4.788 | 4.813<br>4.638 |    |
| 14                                                                                      | 7.842            | 64092                 | 07 53 01.0094                  | +22 20 04.3116                   | 0.557       | 0.553 | 0.515         | 0.53      |              | KO                  | 7.05          | 4.85           | 4.038          |    |
| 16                                                                                      | 7.845            |                       | 08 03 34.1340                  | +20 20 18.6972                   | 0.599       | 0.519 | 0.486         | 0.50      |              | G5                  | 7.03          | 4.836          | 4.742          |    |
| 17                                                                                      | 8.769            | <u>67482</u>          | 08 09 39.7601                  | +35 42 08.5032                   | 0.58        | 0.535 | 0.498         | 0.5       |              | KO                  | 7.3           | 4.952          | 4.839          |    |
| 18                                                                                      | 8.815            | <u>64602</u>          | 07 56 01.9399                  | +34 22 10.4160                   | 0.572       | 0.541 | 0.505         | 0.52      |              | K0                  | 7.57          | 4.972          | 4.827          |    |
| 19                                                                                      | 8.917            | 60004                 | 07 48 06.8957                  | +32 51 25.0308                   | 0.557       | 0.552 | 0.518         | 0.53      |              | G5                  | 7.204         | 4.952          | 4.548          |    |
| 20<br>21                                                                                | 10.159<br>10.402 | <u>60204</u><br>77694 | 07 34 31.5922<br>09 04 51.4817 | +28 41 11.6808<br>+24 36 18.5040 | 0.519       | 0.583 | 0.547         | 0.56      |              | G5<br>K2III         | 7.8           | 4.605<br>4.982 | 4.498<br>4.838 |    |
| 21                                                                                      | 4                | 77034                 | 03 04 31.4017                  | #24 50 10.5040                   | 0.501       | 0.555 | 0.505         | 0.55      | 0.555        | K2III               | 7.0           | 4.302          | 4.000          |    |
|                                                                                         |                  |                       |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
| Filters                                                                                 | ect stars fa     | arther th             | an: Maximum I                  | RA Separation (m                 | n): 10.0    |       | Ma            | ximum D   | DEC Separat  | ion (deare          | ee): 10       | .0             |                |    |
|                                                                                         |                  |                       | nitude: below                  |                                  |             |       |               | and abov  | -            | - 3                 |               |                |                | _  |
|                                                                                         |                  |                       | (and unknowns)                 |                                  |             |       |               |           | 1            | <b>V</b> 0 <b>V</b> | B 🗹 A         | 🖌 F 🗾 G        | i 🗌 K 🛛        | M  |
| 🗌 Reje                                                                                  | ct Lumino        | sity Clas             | ses (and unknow                | wns):                            |             |       |               |           |              | I                   |               | III 🗹 IV       | VV             | <  |
| 🖌 Reje                                                                                  | ct Visiblity     | y below               | : vis2: 0.5                    |                                  |             |       |               |           |              |                     |               |                |                |    |
| 🗌 Reje                                                                                  | ct Visibilit     | y Accura              | acy above (or unl              | (nown): vis2Err                  | /vis2 (%) : | 2.0   |               |           |              |                     |               |                |                |    |
| 🗌 Reje                                                                                  | ect Variabi      | lity                  |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
| 🗾 Reje                                                                                  | ect Multipli     | icity                 |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
|                                                                                         | ect Invalid      | -                     |                                |                                  |             |       |               |           |              |                     |               |                |                |    |
| 🗹 Dian                                                                                  | neter qua        | lity: Ma              | aximum chi squa                | re: 2.0                          |             |       | Maximu        | m relativ | /e error (%) | : 10.0              |               |                |                |    |
| 🚡 sear                                                                                  | ching calil      | brators.              | done.                          |                                  |             |       |               |           |              | 29 M                | 1             | Provided       | by JM          | MC |


# How much time is needed?

- Calibration Strategy:
  - $Cal1 Obj Cal2 Cal1 Obj Cal2 \dots$
- Time to collect Cal-Sci-Cal set:
  - Seeing and brightness dependent
  - CLASSIC, CLIMB, PAVO, JouFlu: 15 45 minutes
  - VEGA: 30 60 minutes
  - MIRC: 90 minutes for Cal-Sci set
- Collect many repeated calibration sets
  - Improve detection, test systematics
  - Increase u,v coverage on the sky

**CHARA Community Workshop Planning Software: ASPRO 2** Aspro2 [c2] File Edit Interop Help Targets Main settings Configuration(s) Constraints Q HD 30652  $\otimes$ Interferometer CHARA Night restriction 🗹 S1 W1 W2 Ŧ S2 E1 E2 Date 2017/12/01 HD 30652 Editor Period CHARA • S2 E1 W1 🜭 HD 28355 (cal) Min. Elevation 30 Wind S2 E1 W2 Instrument CLIMB • 🜭 HD 30739 (cal) S2 E2 W1 🌭 HD 31295 (cal) PoPs 215 [Manual] Ŧ S2 E2 W2 🕄 Sky Status: 🕕 Information -S2 W1 W2 Notebook Map Observability UV coverage CHARA - CLIMB - S2 E2 W2 + PoP2 PoP1 PoP5 Day: 2017-12-01 - Moon = 97.7% 248 254 152 180 208 HD 30652  $\diamond$ 47 60 63 60 40 34 117 129 180 231 258 266 HD 28355 (cal) 53 60 69 60 40 30 258 11:45 120 143 180 217 251  $\diamond$ HD 30739 (cal) 60 65 60 40 49 32 119 139 180 221 253 261 HD 31295 (cal) 66 60 31 50 60 40 12/01 / 12/02 01:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 02:00 U.T.C. 📕 Science 📙 Orphan calibrator Hide calibrators Hide calibrators Time: U.T.C. 🔻 🗹 Night only 🗌 Baseline limits 🗌 Details 🛛 Filters: Scroll view 153 M Provided by JMMC 耳 OIFits done.

http://www.jmmc.fr/aspro\_page.htm









- Visitor Support Scientist to help with planning observations
- Observations carried out by CHARA staff
- Visitors are encouraged to travel to the Array to participate in the observations
  - Real-time input from PI on decisions that could impact the science objectives and priorities
- CHARA staff will support data reduction to OIFITS format
  - Data reduction software available for those interested in reducing and calibrating data
- Data analysis, model fitting, image reconstruction performed by users



## Data Access -The CHARA Server

- Under Development
- Located at GSU Data Center
- 3 Virtual Machines:
  - Database/Archive Machine
  - Data Reduction Machine
  - Remote Observing Machine

Data Scientist

**Jeremy Jones** 

- Active Mode
- Passive Mode







- OI Database
- Query and download data (OIFITS)
- CHARA observation logs for VEGA, Classic, CLIMB, (through 2015)
- Logs for all CHARA obs by fall 2018

| ♥Filters                                                                                                                                      |   |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|--|--|
| Position: GJ 581 Radius: 2 💭 aromin y Date of observation: after YYYY-MM-DD 🗰 before YYYY-MM-DD                                               |   |  |  |  |  |  |  |  |
| Instrument: Any Instrument • Wavelength range: any value • Data reduction level: I.O., I.I., I.Z.2, I.S. Availability: Public Restricted @All |   |  |  |  |  |  |  |  |
| Collection: Any Collection • DataPl name: Any DataPl •                                                                                        |   |  |  |  |  |  |  |  |
| 25 • rows max. per page, sorted by Instrument • & descending. Q Search Reset                                                                  | ; |  |  |  |  |  |  |  |

#### Results

Meta-data will try to follow VO4OI proposal and Ivoa:ObsCore document (get metadata description in the associated doc ) 33 observations from 1 oifits files (0 private)

Page 1 / 2 Next Last

Results for

B SELECT ALL \* FROM oidb AS t WHERE ( CONTAINS(POINT('ICRS', t.s\_ra, t.s\_dec), CIRCLE('ICRS', 229.8617625, -7.7222806, 0.03333333333333333333))=1 ) ORDER BY instrument

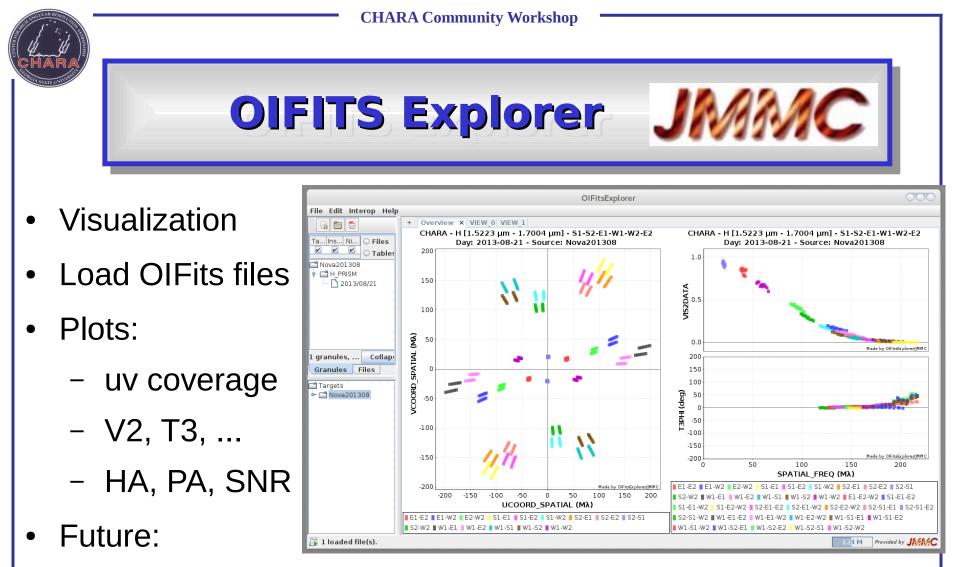
|     | (Edit query) |            |                     |                   |            |            |             |            |  |  |  |
|-----|--------------|------------|---------------------|-------------------|------------|------------|-------------|------------|--|--|--|
| ۵   | target_name  | access_url | t_min               | instrument_name - | wlen_min   | wlen_max   | nb_channels | datapi     |  |  |  |
| ۵   | HIP_74995    | -          | 2008-05-16T09:38:52 | CLASSIC           | 1.96000000 | 2.31000000 | -           | Baines 🔀   |  |  |  |
| Q - | HIP_74995    | -          | 2010-03-30T08:09:35 | CLASSIC           | 1.53000000 | 1.82000000 | -           | Boyajian 🔀 |  |  |  |
| Ø.+ | HIP_74995    | ÷          | 2010-03-30T08:31:12 | CLASSIC           | 1.53000000 | 1.82000000 | -           | Boyajian 🔀 |  |  |  |
| ۵   | HIP_74995    | -          | 2010-03-30T09:44:38 | CLASSIC           | 1.53000000 | 1.82000000 | -           | Boyajian 🔀 |  |  |  |
| ۵   | HIP_74995    | -          | 2010-03-30T10:13:26 | CLASSIC           | 1.53000000 | 1.82000000 | -           | Boyajian 🔀 |  |  |  |

#### http://oidb.jmmc.fr



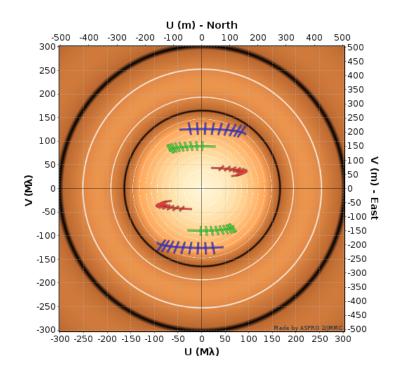
- OIFITS: Data exchange standard for Optical Interferometry
- Target and instrument information tables:
  - OI\_TARGET
  - OI\_ARRAY
  - OI\_WAVELENGTH
- Data tables:
  - OI\_VIS2
  - OI\_T3

## OI\_VIS2 Table (OIFITS)

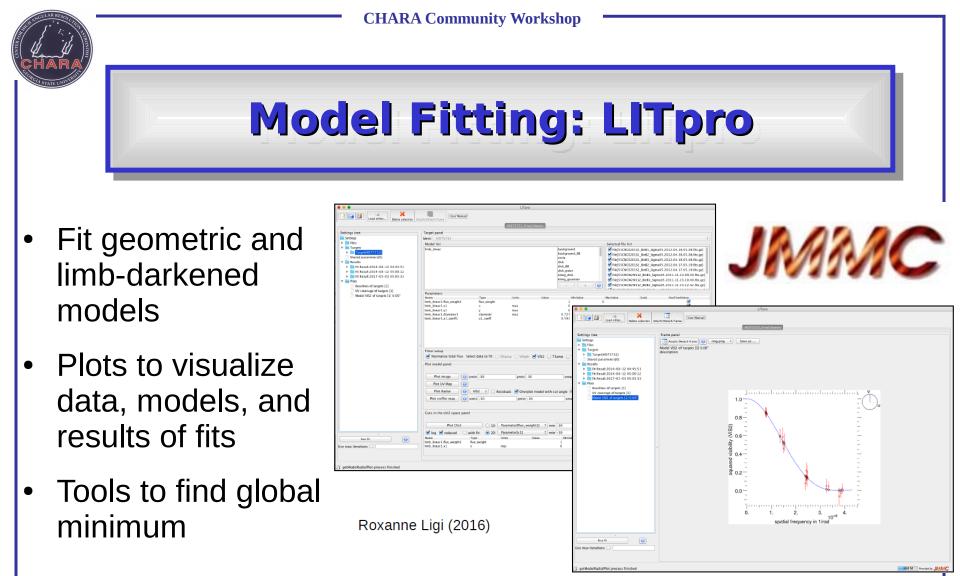

| TARGET_ID | Target number               |
|-----------|-----------------------------|
| TIME      | UTC time of observation (s) |
| MJD       | Modified Julian Date        |
| INT_TIME  | Integration time (s)        |
| VIS2DATA  | Squared Visibility          |
| VIS2ERR   | Error in Squared Visibility |
| UCOORD    | U coordinate of data (m)    |
| VCOORD    | V coordinate of data (m)    |
| STA_INDEX | Station numbers             |
| FLAG      | Flag                        |

# OI\_T3 Table (OIFITS)

| TARGET_ID | Target number                               |
|-----------|---------------------------------------------|
| TIME      | UTC time of observation (s)                 |
| MJD       | Modified Julian Date                        |
| INT_TIME  | Integration time (s)                        |
| ТЗАМР     | Triple Product Amplitude                    |
| T3AMPERR  | Error in Triple Product Amplitude           |
| ТЗРНІ     | Triple Product Phase in degrees             |
| T3PHIERR  | Error in Triple Product Phase in degrees    |
| U1COORD   | U coordinate of baseline AB in triangle (m) |
| V1COORD   | V coordinate of baseline AB in triangle (m) |
| U2COORD   | U coordinate of baseline BC in triangle (m) |
| V2COORD   | V coordinate of baseline BC in triangle (m) |
| STA_INDEX | Station numbers                             |
| FLAG      | Flag                                        |


## Software for Reading/Writing OIFITS Files

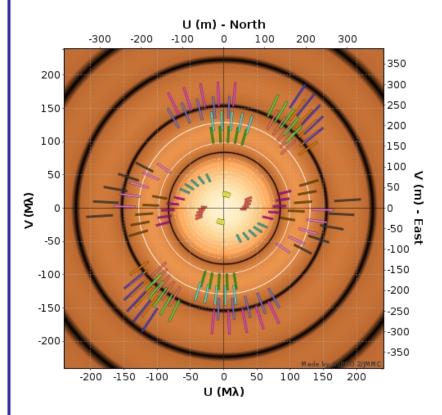
- OIFITSlib C Library
  - https://github.com/jsy1001/oifitslib
- IDL OIFITS Library by John Monnier
  - http://dept.astro.lsa.umich.edu/~monnier/oi\_data/
- OIFITS Explorer by JMMC
  - http://www.jmmc.fr/oifitsexplorer\_page.htm
- OITOOLS.jl in development by Fabien Baron
  - Data visualization and modeling (Julia)



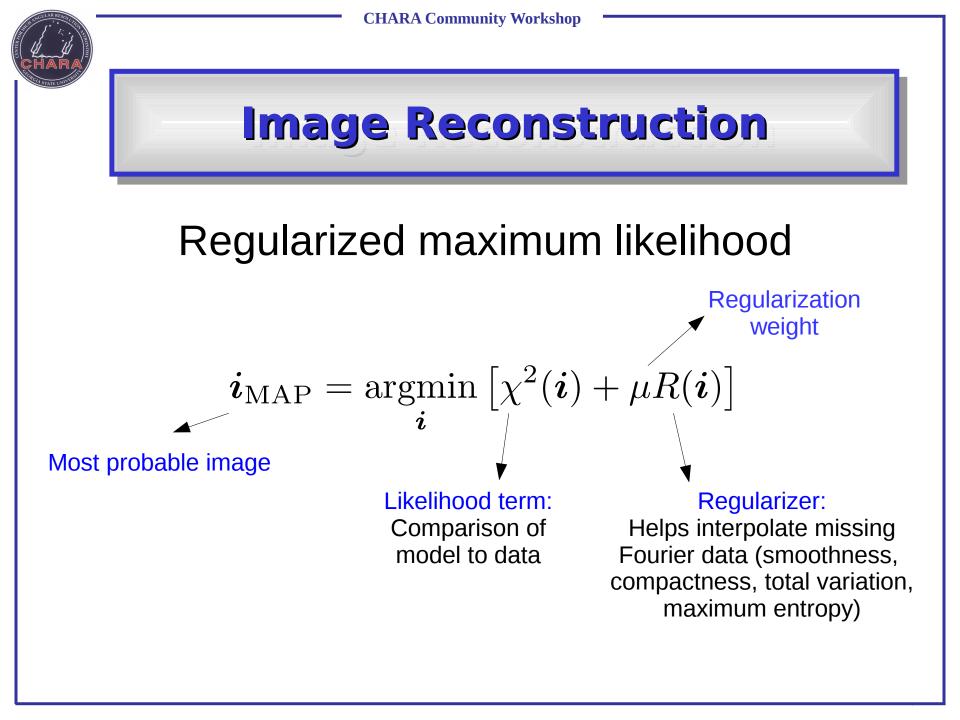

- Editor: flag and export merged OIFITS files
- Better data selection graphically

### **Data Analysis**




- Interferometers measure the Fourier Transform of the brightness distribution
- Sparse sampling
- Geometric model fitting
- Physical models
- Image reconstruction




LITpr⇔

#### http://www.jmmc.fr/litpro\_page.htm

#### **Image Reconstruction**



- Sparse sampling of Fourier frequencies in plane of sky
- Inverse Fourier transform to obtain image
  - Compromise between:
    - Fitting available data
    - Keeping the image as regular (simple) as possible



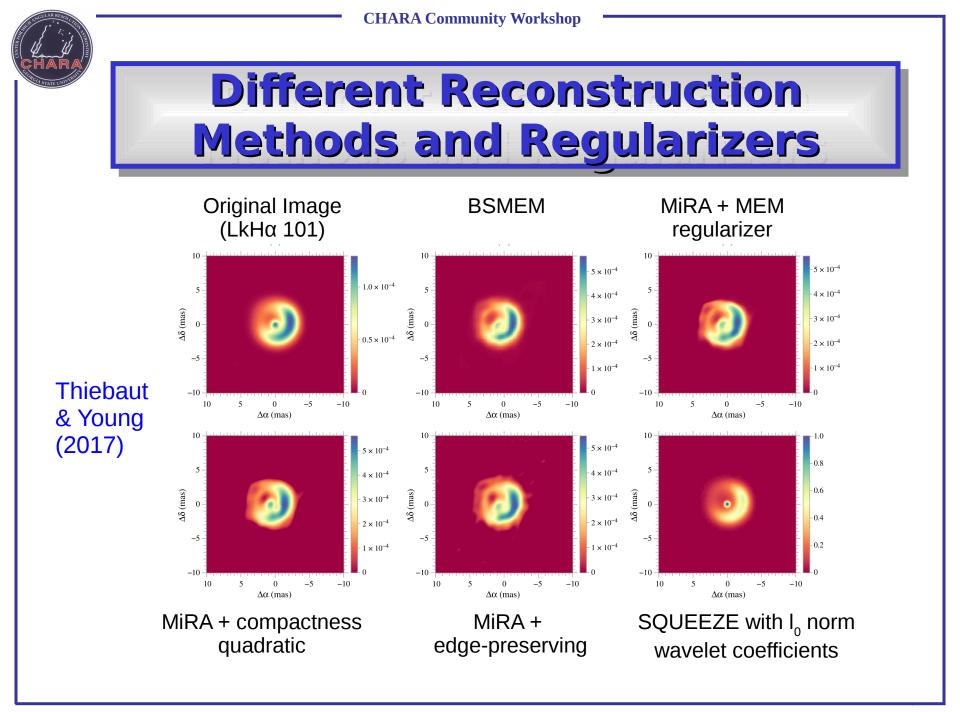


# **Image Reconstruction Software**

| Software | Optimization                                                   | Regularizer                         | Multi-<br>Spectral | Simultaneous<br>Model Fitting |
|----------|----------------------------------------------------------------|-------------------------------------|--------------------|-------------------------------|
| BSMEM    | Trust region gradient                                          | Maximum Entropy<br>Method           | No                 | No                            |
| MACIM    | Simulated annealing                                            | Maximum Entropy<br>Method, Darkness | No                 | Yes                           |
| MiRA     | Variable Metric<br>Limited Memory<br>with bound<br>constraints | Many                                | No                 | Yes                           |
| SQUEEZE  | Parallel Tempering                                             | Many                                | Yes                | Yes                           |
| PAINTER  | Alternating<br>Direction Method<br>of Minimizers               | Many                                | Yes                | No                            |








# Principles of image reconstruction in optical interferometry: tutorial

#### ÉRIC THIÉBAUT<sup>1,\*</sup> AND JOHN YOUNG<sup>2</sup>

<sup>1</sup>University of Lyon, University Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230, Saint-Genis-Laval, France <sup>2</sup>University of Cambridge, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK \*Corresponding author: eric.thiebaut@univ-lyon1.fr

> JMMC is developing a common interface for "classic" image reconstruction software http://www.jmmc.fr/oimaging.htm



#### **Guides to planning observations available on the CHARA website:**

http://www.chara.gsu.edu/observers/applying-for-chara-time http://www.chara.gsu.edu/observers/planning-an-observation

Links for modeling and imaging software available on the CHARA website:

http://www.chara.gsu.edu/analysis-software/