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CHAPTER I
SPHERICAL TRIGONOMETRY

1. Introduction.

When we look st the stars on a clear night we have the ?E&u&..
impression that they are all sparkling points of light, apparently
situated on the surface of a vast sphere of which the individual
observer is the centre. The eye, of course, fails to give any in-
dication of the distances of the stars from us; however, it allows
us to make some estimate of the angles subtended at the observer
by any pairs of stars and, with suitable instruments, these angles
can be measured with great precision. Spherical Astronomy is
concerned ammmﬂsmhw with the directions in which the stars are
viewed, and it is convenient to define these directions in terms
of the positions on the surface of a sphere—the celestial &awmwm.l
in which the straight lines, joining the observer to the mamn.m
Intersect this surface. Itis in this sense that the usual expre
“the position of a star on the celestial sphere™ is to be i SH.
preted. The radius of the sphere is entirely arbitrary.
foundation of Spherical Astronomy is the geometry of the mmu ere.

2. The spherical triangle.

Any plane passing through the centre of & sphere aﬁm the
gurface in a circle which is called a great eircle. Any other plane
intersecting the mvw_ono but not passing &rho,pmw the centre will
also cut the surface in a circle which, in this case, is called a
small circle. In Fig. 1, EAB is a great circle, for its plane passes
through O, the centre of the sphere. Let QOP be the diameter of
the sphere gg&o&mﬁ to the plane of the great circle E4B.
Let R be any point in OP and suppose a plane drawn through
R parallel to the plane of EAB; the surface of the sphere is ﬁﬁu
intersected in the small circle FCD. It follows from the mwn;ﬁ.

struction that OP is also perpendicular to the plane of FCD.

extremities P and § of the common perpendicular diameter QOP
are called the poles of the great circle and of the parallel small
circle. Now let PCAQ be any great circle passing through the
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poley P and @ and intersecting the small circle FCD and the
great circle EAB in C and 4 respectively. Similarly, PDB is
part pf another great circle passing through F and ¢. We shall
mr.um it convenient to refer to a particular great circle by specifying
simply any portion of its circumference. When two great circles
intersect at a point they are said to include a spherical angle
which is defined as follows. Consider the two great circles P4
and PB intersecting at P. Draw PS and PT, the tangents to the

>T

D

Y

—
— et b h

Q -
Fig. L
Q:d erences of PA and PB respectively. P7T is, by construc-
ton, ﬂmﬁb&a&ﬁ to the radius OP of the great circle PR and,
being in the plane PBQ, is therefore parallel to the radius OB.

Similarly PS is parallel to the radius OA. The angle SPT

defines the spherical angle at P between the two grest ci

P4 ”m.Ew PB, and it is equal to the angle A0B, AB vmmMMm nrﬂo““
intercepted on the great circle, of which P is the pole, between
the two great circles P4 and PB. It is to be emphasised that-a
spherical NMMW»@ is defined only with reference to two intersecting
great circles. .

et
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If we are given any three points on the surface of a sphere,
then the sphere can be bisected so that all three points lie in the
same hemisphere, If the points are joined by great circle arcs
all lying on this hemisphere the figure obtained is called a
spherical triangle. Thus, in Fig. 1, the three points 4,XandYon
the spherical surface are joined by great circle ares to form the
spherical triangle AXY. AX, AY and XY are the sides and the
spherical angles at 4, X and ¥ are the angles of the spherical
triangle. Actually, if R is the radius of the sphere, the length of
the spherical arc AY is given by

AY = R x angle 407,

the angle A0Y being expressed in circular measure, ie. in
radians, Now for all great circle arcs on the sphere the radivsg
R is constant and it is convenient to consider its length as unity.
The arc AY is then simply the angle which it subtends at the
centre of the sphere. If AY is, let us say, ome-eighth of the
circumference of the complete great circle through 4 and Y, the

gide AY is then .M in circular measure and there is no ambiguity

if it is expressed as 45°; similarly, for the remaining sides of the
triangle. It follows from the definition of a spherical triangle
that no side can be equal to or greater than 180°. As another
example, PAB is a spherical triangle two of whose sides P4 and

PB each subtend m radians or 90° at O; in this instance we say

that P4 and PB are each equal to m radians or 90°. But PCD

is not a spherical triangle, for the arc CD is not a part of a great
circle. Accordingly, the formulse which will be derived for
spherical triangles will not be applicable to such a figure as PCD.

3. Length of o small circle arc.
Consider, in Fig. 1, the small circle are CD. Itslength is given
by CD = RC x angle CRD.
Also, the length of the spherical arc 4B is given by
AB = 0A x angle AOB.

But since the plane of FCD is parallel to the plane of EAB, then
CED = AOB, for RC, RD axe respectively parallel to 04, OB.
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. RO
Therefore CD = 04 .AB.
But, since 04 = OC (radii of the sphere), we have
. RC
D= 0c" AB.

- Now RC is perpendicular to Q‘w“hu RC = 0Ccos ROO. From
the parallelism of BC and 04, RGO = AGC. Hence

CD = AR cos A0C.

Now 400 is the angle subtended at the centre of the sphere by

the great circle arec AC. The formula can then be written as
CD = AB cos AC,

CD = ABsin PC ceeeen(D).

4. Terrestrial latitude and longitude.

The concepts introduced so far will now be illustrated with
reference to the earth. For many practical problems, the earth
can be regarded as a spherical body spinning about a diameter
PQ (Fig. 2). Pis the north pole and Q is the south pole. The
great circle whose plane is perpendicular to PQ is called the
equator. Any semi-great circle terminated by P and @ is a

P

or, since P4 = 90°,
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meridign. In particular, the meridian which passes through the
fundamental instrament (the transit circle) of Greenwich Ob-
servatory is, by universal agreement, regarded as the ﬁ.&h&f&
or standard meridian; let it be PGKQ in Fig. 2, intersecting the
equator in K. Let PHLQ be any other meridian cutting the
equator in L. The angle KOL is defined to be the longitude of the
meridian PHQ and it can be described equally well as the equa-
torial arc KL or the spherical angle KPL. Longitudes are
measured from 0° to 180° east of the Greenwich meridian and
from 0° to 180° west, following the directions of the arrows tear
K in Fig. 2. Thus, from the figure, the longitude of the meridian
PHQ is about 100° east (E) and that of the meridian PM@ is
sbout 60° west (W). All places on the same meridian have lthe
same longitude and the meridian on which a particular place is
situated is specified with reference to the principal meridian
PGEQ. To specify completely the position of 2 place on the s
of the earth, we require to describe its position on its meridian
of longitude. This is done with reference to the equator. Consi
aplace J on the meridian PHQ). The meridian through J cuts
equator in L and the angle LOJ, or the great circle are

& place such as R, between the equator and the south pole @, is
szid to be in south latitnde (S). In this way the position of any
point on the surface of the earth is referred to the two funda-
mental great circles, the equator and the meridian of Greenwich.

Let ¢ denote the latitude of J; then LOJ or LJ = ¢. Since
OP is perpendicular to the plane of the equator, POL = 90° and
therefore POJ = 90° — ¢. The angle POJ or the spherical :
PJ is the colatitude of J. We have thug |

Colat. = 90° — Lat. Lﬂ_
All places which have the same latitude lie on a small circle
parallel to the equator, called a parallel of latitude. Thus| all
places with the same latitude as Greenwich lie on the small circle
MGHX. If 6 denotes the latitude of Greenwich, then by formula
{1) the length of the small circle arc HX, for example, is givenin
terms of the length of the corresponding equatorial arc LY by

HX =LY¥cos¢ ... (2.
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To give greater precision to the meaning of this formula, we
aonm%m_. the units in which distances on the surface of the earth
are expressed. The simplest is that defined as the great circle
&h”mcm between two points subtending an angle of one minute
of at the centre of the earth—this unit is kmown as the
nautical mile snd is equivalent to 6080 feet (we neglect the small
variations in this value due to the fact that the earth is mot
quitea sphere). If the difference in longitude between any two
H..wm.aow on the same parallel of latitude is known, e.g. LY, then
LY can be expressed as so many minutes of arc and this number
is the number of nautical miles between the two points L and ¥
on the equator. The formula (2) then provides the means of
caleulating the distance between H and X expressed in nautical
BMM@ (or minutes of arc) and measured along the parallel of lati-
tude.| .

u. The fundamental formula of spherical trigonometry.
. Let ABC be a spherical triangle (Fig. 3). Denote the sides BC,
CA, |AB by a, b and ¢ respectively. Then, by our definition, the

Fig. 3
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gide @ is measured by the angle BOC subtended at the centre O
of the sphere by the great circle arc BC. Similarly, b and ¢ are
measured respectively by the angles 40C and 40B. Let AD be
the tangent at 4 to the great circle 4B and AE the tangent ab
A to the great circle AC. Then the radius 0.4 is perpendicular to
AD and AE. By construction, 4D lies in the plane of the great
circle AB; hence, if the radius OB is produced, it will intersect
the tangent AD at a point D. Similarly, the radius OC when
produced will meet the tangent AE in B. Now the spherical
angle BAC is defined to be the angle between the tangents at A
to the great circles AB and AC, so that the spherical angle
BAC = DAE. The spherical angle BAC will be denoted simply
by 4, so that DAE = A.

Now, in the plane triangle 04D, 04D is 90° and 40D,
identical with 40B, is c. We have then

AD = 0Odtanc; OD=0OAsece  ...... (3}
From the plane triangle OAE we have, similarly,
AE =04 tanb; OF =OAsech ... (4).

From the plane triangle DAE we have
DE? = AD*+ AB? — 24D:AE cos DAE,
or DE3= 0A*[tan®c+ tan®b — 2 tan b tan ¢ cos 4]

From the plane triangle DOE,
DE? = OD* + OE% — 20D.0F cos DOE.

But DOE = BOC = a;

- DE*= 042 [sec? ¢ + sect b — 2 sec b sec ¢ cos a]
Hence, from (5) and (6),

gec?c 4 sec?b — 2gechsecccosa

= tanfc 4+ tan?b — 2tan b tan c cos 4.

Now sectc = 1+ tanZc; sec?b = 14 tan®d,
and after some simplification we obtain

cosa=cosbcosc+sinbseinccosA ... {A).

This is the fundamental formula of spherical trigonometry and
it will be referred to in the following pages as the cosine-formula




8 SPHERICAL TRIGONOMETRY

or formula A. There are clearly two companion formulae; they

are .
cosb=cosccosa+sincsingcos B ...... (N,

cosc=cosacosb+sinasinbeos ¢ ...... (8).

From the three formulae—A, (7) and (S}—all the other formulae
of spherical trigonometry in use can be derived. The funda~
mental formula has two direct practical applications:

(1) If two sides, e.g. b and e, and the included angle A of a
apherical triangle ABC are known, formula A enables the cal-
culation of the third side @ to be made.

(2) If all three sides are known, the angles of the triangle can
be found successively by means of A, (7) and (8).

For suppose the value of A4 is required ; then by A

cos 4 = cosec b cosec ¢ [cosa — cosbeose] ...... {9).

Formula (9) can be replaced by one more suitable for logarithmic
4

calculations as follows. Since cos 4 = 1 E.w sin? 5 We have,

from A,
Smanoom?om?_.anmaunﬁlwmmbw@
= cos (b — ¢) ~ 2sinbsin o sin®S,
_ A
or oomﬁwlnvanmaﬂmewm_bagnmw

ai.,wlaaua: wiauwauoauoauul.

. 2sin
Letsbodefined by 5, _ 4.5l o R (10).

Then a+b~—~c¢=2(s—¢) and a—-bte=2(—-0).

Benco sin (s~ B)sin (s~ o) = sinbsin cain®Z;
- | sin (¢ — b) sin (& — ¢)
- m“_._p..w.!]t . Mun.m.oww—.ﬁ.uﬂ ...... AHHV.

This form is useful in numerical work. There are 4wo similar
. .. . B . C
equations giving sin 7 and sin 3 -

4

If we write cos A = 2 cos? 3 — linthe formula A and proceed

PP 4 i e e o e
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as before, we shall obtain
y:

CoO8 5 =

sin s sin (3 - )
- el

sinbsine
B C¢

with two similar equations giving cos 5 and cos 3 -

From (11) and (12) by division we have

n@ﬂmﬂ mmbm,.wlﬁmmbomla
2 sin g sin (s — a)

There are two similar equations, giving Sﬁw and Hﬁ:m

.Pu%ouoo::v.ﬁwug&Gmunpﬂwwummmnoo&nﬁmamhu wvm
three sides being known. . i
6. The sine-formula. A,

‘We shall now derive what is known as the sine-formula. m.urB
the cosine-formula A, we have

gin b gin ¢ ¢cos 4 = cos @ — cos b cos c.
By squaring, we obtain
sin?bsin?ccos? A = cos?a — 2008 ¢ cos b cos ¢ + cos? b cosl e,
The left-hand side can be written
sin?bsin®c — sin?b sincsin? 4,
or 1-—cos?b~— cos?c+ costbcostc—einZbhsinZesin? 4,
Hence
sin?bginZesin® 4
=1-—cos*a— cos?b— cos®c+ 2 cosacosheose
Let a positive quantity X be defined by
X2gin* g sin?b sinte
=1~ cos?g — cos?b — cos®c+ 2cosacosbcose,
Then, from the previous equation,

sinz 4
==X,
sin 4
so that Nﬂn_ummbla..

But in a spherical triangle the sides are each less than 180°,
and this applies also to the angles. As sin @ is positive for all
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values of 6 between 0° and 180°, the minus sign in the above
equnation is inadmissible, and we have

x o Sind
“sna’
By treating (7) and (8) in a similar way, we shall obtain
X = miE m mE ¢
gnb -~ sinc”
sinA smB sinC
Hence 2 "smb " sine ceene{B)

This result we shall refer to as the sire-formule or formula B.
Fprmula B gives a relation between any two sides of a triangle
and|the two angles opposite these sides. It has to be used, how-
ever, with circumspection in numerical calculations; for, suppose
that, the two mﬁ@m a and b and the angle B are given, then by B
gin a sin w

. sin b

~ from which the value of sin4 can be calculated. But
sin (180° — A) = gin 4, and without further information it is
not |possible to decide which of the two angles 4 or 180° — 4
represents the correct solution. The analogous ambiguity in
plane trigonometry may be recalled to the reader’s attention.

7. Formula G.

‘Write equation {7) in the form

mw_nmmbaoom.wﬁ cosh — cosccosa
=cosh - cosc (cosb cosc + sinbsin ¢ cos 4)
=sin? ¢ cos b — sin bsin ccosccos 4.
Hence, dividing by sin ¢, we have
sinacosB=coshsinc~sinbcosccosA ...(C),
a relation involving all three sides and two angles.

We can easily prove in a similar manner, beginning with
oa.gﬁou (8), that

singcos  =coscsind — mEncomvaomh -..(14).
If we regard b and ¢ as the two principal sides gou 4 is the

find =

non&miom angle. As we have seen, the cosine-formula A gives -

cos a in terms of b, ¢ and the included angle 4. Formulze C and

oot e e

e g e ) - R T e,

B L

P A T s o e T

e
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(14) are, In some ways, analogous to A as they give sina x cosine
of one of the two angles B and C, adjacent to the side &, in
terms of b, ¢ and A.

The formula C can slso be proved as follows. Suppose the
side ¢ of the triangle 4. BC to be less than 20° (the case when ¢ is
between 90° and 180° is left as an exercise to the student).
Produce the great cirele arc B4 to D so that BD is 90° (Fig. 4).

0
(=
]
Iy ]
-—"'—

©0
q.

e -

t

Fig. 4

Then AD = 90°— ¢ and CAD = 180°— A. Join Cand Dby a
great circle arc and denote it by z. From the triangle DAC,
by A,

€08 == ¢os (90° — ¢) cos b + sin (90° — c) sin b cos (180°— 4),
or
cosz=sinccosb —coscsinbeos 4 cesee=(18).
From the triangle DEC, by A,
€03 z == ¢os 90° cos @ - 5in 90° sin @ cos B,
or cosx=sinacos B
and therefore from (15) and (186)

sin g cos B = cosbsine — sinbcosccos A,
which is formuls G,

vorene(16),
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8. The four-parts formula,

Another useful formula, known as the four-parts formula, will
now be derived. In the spherical tri- 4
angle 4 BC (Fig. 5) consider the four
consecutive parts B, a, C, b. The
angle C is contained by the two ¢
sides @ and b snd is called the b
“inner angle”. The side a is flanked
by the two angles B and C and is
called the “inner side”. Introduce

B and C by means of the cosine- & a c

formula; then we have Fig. 5.
cosb=cosacosc+sinasinceos B ...... (17,
cosc=cosbcosa+sinbsinacosC ...... (18).

Substitute the value of cos ¢ given by ( 18) on the right-hand side
of (17); then

cosb = coza (cosbcosa + sin b sina cos C) + sinasineccos B;
.. cosbsin®ag = cos e sin b sin ¢ cos € + sin a sin ¢ cos B.
Divide throughout by sin a sin b; then

cotbeina = cosacos O 4+ Mhlwnwoouww.
But by the sine-formula B,
sinc _ sin C
sind sinB’ .
Hence cosacosC=sinacotb~sinCcotB ...... ™),

which may be put into words, as an aid to the memory, as
follows:
cos (inner side).cos (inner angle)
= gin (inner side).cot (other side)
— sin {inner angle).cot (other angle).

9. AlUernative proofs of the formulae A, B and C.

The formulae B, G and D have been derived by algebraic
transformations of the fundamental formula. Another proof of
each of A, B and C will now be briefly obtained from a simple and
instructive geometrical construction. Let 4BC (Fig. 6) be a
gpherical triangle and O the centre of the gphere. Join O to the

SPEERICAL TRIGONOMETRY 13

vertices and take any point P in OC. From P draw PQ perpen-
dicular to 04 and PR perpendicalar to OB. In the plane 048,
draw Q8 perpendicularto 04 and RS perpendicular to OB, These
perpendiculars meet in §. Join PS and 08, It we draw tangents
at 4 to the great circle arcs AB and 4C, these tangents, by
definition, include the spherical angle 4. But Q8 and QP are by
construction parallel to these tangents. Hence PQS =~ A.
Similarly PRS = B. Also COB = a, COA =b and AOB = c.

c

Fig. 6.

The first step is to prove that P8 is perpendicular to the w_muo

40B. By the construction, 0@ is perpendicular to both P and
@8; hence 0Q is perpendicular to the plane PQS; therefore oQ
is perpendicular to PS which is & line lying in the plane PQS.
Similarly, OR is perpendicular to PS. Thus PS§ is perpendicular
to both OQ and OR and is therefore perpendicular to every line
in the plane of OQ and OR, that is, PS is perpendicular to the
plane OAR and, in particular, to 08, §@ and SE. Thus P@S and
PRS are right-angled triangles. m
(1) We have, from the right-angled triangles OQP and ORP,
PQ=0Psinb; PR=OPsina
0@ =0Pcosb; OR=OPcosa ... (20).
Let z denote the angle S0Q; then ROS = ¢z
Now O8=0Qsecz and 08 = OF sec (e —x).
Hence OR cosz= 0Q cos (¢ — z);
< by (20), OPcosacosz= OP cos b cos (¢~ z);
v+ COSG =08 b cos ¢ 4 cos b sin ¢ tan z,
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But | tanz= 05 = 295004
and hence cosa = cosbeosc+ sinbsinccos 4,
which is formula A.

(2) Again, from the right-angled triangles PQS and PES,

W PS8 = PQsin PQS = PQsin 4, ‘

and | PS8 = PRsin PRS = PRsin B.
Hence | PQsin 4 = PEsin B,
and . by (19),

=tanbcos 4,

| OP sin b sin A = OP sin e sin B,
from which formula B follows.
(3) We have, from the right-angled triangles 05Q and OSE,
QS = OSsinxz and ES = 0Ssin (¢ - z);
- RS sinz = Q8 (sin ¢ cos & — ¢os ¢ sin ),

or RS = Q8 (sin ¢ cot x — cosc).
Now . RS = PRcos B=0Psinacos B,
and Q8 =PQcos A=0Psinbcos 4,
and QS eotz = 0f = OPcosh,

Hence sinacos B=cosbsinc —sinbcosccosd,
which is| formula G.

10. wmwﬁ\,n:.&& and quadrantal triangles.

When one of the spherical angles is 80°, the formulae A, B,
C and D assume simple
forms. This is also the case
when one side of a spherical
triangle/is 90°—the triangle
isthen said to be guadrantal.
Rules have been given by
Napier according to which
the various simple formulae
can be written down. The
rules, however, impose an
additional charge on the
memory and it is much
simpler| to apply one of
the mgin formulae A to
D to the particular right-

SPEERICAL TEIGONOMETRY 15

angled or quadrantsl triangle concerned. The rules are as
follows:

(1) Right-angled triangle in which {' = 90°, Arrange inside a circle the five
“ireular parta” g, b, 80° — 4, 90° — ¢, 80° — B, na in Fig. 7. If any one circular
part is chosen s & “middle”, the two flanking parta are called “adjacents’ and
the two others the “opposites”. The rules then are:

gin (middle) = product of tangenta of edjacenis;
min (middle) = product of cosines of opposites.

(2) Quadrantal triangle in which ¢ = 90°, Arrange oulside the circle (Fig.'T)
the five “circular parts™ 4, B, 90° — g, C ~ 90°, 90° — b. The two rules are
then the same as for right-angled triangles.

11, Polar formulae.

Certain useful formulae can be obtained by means of the polar
triangle which is constructed as follows (Fig. 8). Let 4BC be a
spherical triangle. The great circle of which BC is an arc has two
poles, one in each of the hemispheres into which the sphere is
divided by the great circle. Let
A’ be the pole in the hemisphere
i which 4 lies. Similarly £’ and
¢’ are the appropriate poles of
CA and 4B. Produce BC both
ways to meet 4’8’ and A'C’ in
L and M respectively. Then,
since A’ is the pole of the great
circle LBC M, the spherical angle
BA'C" (or simply 4"} is equal
to the arc LM. Again, B'is the
pole of AC, that is, the angular
distance of B’ from any point on
AC is 90°; similarly the angular Fig. 8.
distance of 4’ from any point on BC is 90°. Hence the angular
distance of ¢ from B’ and from A4’ is in each instance 90°; in
other words, C is the pole of A'B’. Hence CL = 90° and
gimilarly BM = 90°. Now LM = LB + BM = LB+ 80°. Also
BC=a; ; LB=9°—a. Hence 4'= 180°— a. Similarly
B = 180° ~ b and " = 180°—¢. We obtain in & similar
manner

o 180°—4; b = 180°—B; ¢ =180°-C,
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Now apply formula A to the triangle 4" B¢’ and we have, for
example,

cos a’ = cos b’ cos ¢’ + sin b’ sin ¢’ cos 4",
Using the relations just found, we obtain from this equation

— ¢os 4 = cos Beos ¢ — sin Bsin C cos a, .
which 18 a formula for the triangle ABC, giving the angle 4 in
terms of the two remaining angles and the included side. The
procedure in this instance can be extended to any of the principal
formulae which we have already derived, by writing 180°—a
for 4, 180° — b for B, ete., in the formulae A to D.

12. Numerical example.

To illustrate the numerical solution of a spherical triangle, we
shall consider the following problem. In Fig. ¢ let 4 and B
represent two places, in north latitude, on the surface of the
earth; their latitudes are re-
spectively 24° 18' N and 36°
47’ N, and their longitudes
133° 39 E and 125° 24" W
respectively; it is required to
find (i) the length of the great
circle arc 4B, (ii) the angle
PAB, P being the north pole,
and (iii) the most northerly
point on the great circle 4B.

PAHQ is the meridian
through A4 cutting the equator
in H. HA measures the lati-
tode of 4, ie. HA = 24° 18,
P4 is the colatitude of 4;
S PA=90°—24°18"= 65°42".
Similarly PB == 53°13’". Let the Greenwich meridian intersect
the equator in G. Then, following the arrows,

GH =long. (E) of 4 = 133°3Y,
and GK = long. (W) of B = 125° 24',
Hence the arc HGEK = 259° ¥,
and therefore HX (the shorter of the two great circle ares
joining H and K) is 100° 57'; that is APEB = 100° 57", In the

e
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triangle APB we now are given the two sides PA and PB and
the contained angle 4PR.
() Calculation of AB. By formula A, we have
cos AB = cos PA cos PB -+ sin PA sin PB cos APB,
which becomes, on inserting the data, _
cos AR = cos 65° 42’ cos 53° 13’ — sin 65° 42" 5in 53° 13’ cos 79° 3’
= M - N. :
We shall use five-figure logarithms. .
log cos 65°42"-0 9-61 438 logsin 65°42-0  9-95 971
logcos 53° 130 9-77 728 logsin 53°13-0  9-90 358
5 log M = 939 166 logcos 79° 3'-0 9-27 864
s log N = 9-14 193
o M= 0-24 641 5 N = 0-13 865.
Hence cos AB =M — N = 0-10 776; _
.. 4B =83°48"-8 = 5028"-8. ;
Thus the great circle distance between 4 and B is 83° mm..w or
5028-8 nautical miles, T'o the nearest minute of arc, 4B = 83° 49",
{ii) Calculation of PAB. By formula A,
co8 PB = cos AB cos PA + sin 4B sin P4 cos PAB.
In this equation, all three sides PB, AB, PA are now known and
hence we can derive PAB. In this instance simple geometrical

considerations show that PAB isless than 90° and consequently
the sine-formula B can be used without ambiguity; the appro-

priate equation is X
sin PAB = S24PB-m PB
sin 4B ’
all the quantities on the right-hand side being now known.
However, for purposes of illustration, we shall calculate PAB by

Bomamomonbﬁm.ﬁc.Ugo&oh‘w&w?wwvwagam&»r%ww
then !
28=p+a+ b= 8349 4+ 53° 13"+ 65° 42’ = 202° 44", :
Hence &=101°22"; a8~ p=17°33"; s— b= 35°4¢".
In this instance, formula (11} is written
A4 sin (& — &) sin (3 — p)

Bhy= Sinbsm p
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logsin (s —3) =logsin  35°40° 9-76 572
logsin (s~ p) =logsin 17°33’ 9-47 934
logcosecd  =logcosec 65°42' 0-04 029
logcosecp  =logcosec 83°49° 0-00 253
- log mmbnwm = 928 788

o _omm._b\mm = 9-64 394

- A e
S =268
S A =52°1¢,

(i1) Caleulation of the most northerly latitude reached by the
great circle AB. Let C' be the most northerly point on AB
(Fig. 9). Then it is evident that the parallel of Jatitude through
C will touch the great circle at € and that the meridian PC will
be perpendicular to the great circle 4B at C. Thus POA and

WQH each 90°. In the triangle PAC, we now know P4, PAC

and PC4 and it is required to find PC. Clearly, formula B can
be used; it is sinPC _ ginPA
sin PAC ™ &in PCA’
and, gince PCA — 90°, we obtain,
gin PC = gin P4 sin PAC
logsin P4 =logsin 65°42’ 9-95 971
logsin PAC =logsin 52° 16’ -89 810
. logsin PC = 985 781
SO PC=46°T,

Thus the latitude of C is 43° 53",
The calculation of the longitude of C is left as an exercise to

the j&ou.
13. ﬁ_@m haversine formula.

Many calculations are appreciably shortened by the use of
“haversines™. The haversine of an angle 6 (written hav 8) is
defined by P

J hav 6 =1(1—cos §) = abuw eocans(21).
mmnowgmmﬂalwmmﬂnm.ﬂowg«o . ..

co8f =1~ 2havg
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We can now modify formula A, which is

€08 & == ¢0s b cos ¢ 4+ sin b sin ¢ cos 4.
According to (22) write (1— 2hav a) for cosa, and
(1 — 2 hav 4) for cos 4. Then

1— 2hava = cos (b — ¢) — 2 sin b gin ¢ hav 4.

Wirite 1 2hav (b — ¢) for cos (6 — ¢). Then we obtain

hava=hav(b-c)+sinbsinchavA ...... (23),
which is the form of the fundamental formula expressed in
terms of haversines,

From the definition in (21), hav 8 is always positive and
bav (— 8) = hav 4.

The haversines and log haversines of angles from 0° to 180°
are found in some collections of mathematical tables among
which may be mentioned Inman’s Nautical Tables (J. D. Potter,
158 Minories, London, E. 1), which, in addition to the usual
logarithmjc and trigonometrical tables (to five figures), contain
several other tables of astronomical value.

The caleulation of the side AB (Fig. 9) by means of haversines
will now be given in order toshow the convenience of the method.
We write (23) as follows for the triangle PARB:

bav 4B = hav (PA — PB) + sin PA sin PB hav APRB
= hav (PA -~ PB)+ X
loghav APB =log hav 100° 57" 9-77 450
logsin P4 =logsin 65°42° 9-95971
logsin PB  =logsin 53°13’ 9-90 358
o log X == 963 179
S X =0-43 430
hav (PA — PB) = hav 12° 29’ = 0-01 182
.. hav AB = 0-44 612
-~ AD = 83°4Y,
which agrees with our result on p. 17.

14. Another method.

When two sides and the contained angle of a triangle are
given, the following method is sometimes used when it is
required.to find the third side and one of the remaining angles.
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To ifllustrate the method we shall find 4B and PAR (Fig. 9).
Denote AB by p, PB by a, P4 by b and APB by P. Then
a=353°13", b= 65°42' and P = 100° 57",
By formulae A, C and B, we have
cosp=cosacosh+simasinbeosP...... (24},
sinpcos 4 =cosasinb—sinacosbeosP...... (25),

sinpsind =singsn? =, . (26).
Define & (a positive quantity) and D by
cose=decos D . . (27),
gsmacos P=dsinD . .. (28).
Hence we can write (24)-(26) as follows:
cosp=deos(b~- D) ... (29),
ginpeosd =dsin(b~D)y ... (30),
snpsind =ginesin”? ... (31).
{i) From (27) and (28), by division,
tan D=tanacos P ... (32),
from which I} can be caleulated.,
(i) From (30) and (31), . P
gin & sin
tend = om 6~ D)’
which, by inserting the value of d given by (28), becomes
tan 4 = tan Psin D cosec (b— D) ...... (33},

from which 4 can be caleulated.
(iii} From (29) and (30), .
tan p=tan (b— Dysec A ... (34),

from which p can be caleulated.
The calculations.
[§9] logtana =logtan 53°13' 0-12631

log cos P =logcos 100° 57" 9-27 864 n

o logtan D = 9-40 495 »
cos P is negative and we attach the letter = to its logarithm
to remind us of this fact. It follows that tan D s negutive. 'We
have assumed in formulae (27) and (28) that d is a Ppositive
quantity. Then, from the given values of @ and P, it follows that
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cos D is positive and sin D is negative; thus D is in the fourth
quadrant, and from the value of log tan .D which we have found

we obtain D = 360° — 14° 15'-6 = 345° 44”4,
Hence

b— D =65°42 — 345° 44”4 = — 280° 2-4 = 79° 57",
@) logtan P =logtan 100°57° 0-71338n
logsin D =logsin 345°44’-4 9:39151n
log cosec (b — D) =log cosec 79° 576  0-00 670
C logtan 4 = 0-11 159
and, as 4 is less than 180°, we have
"PAB = A = 52°16"9.
(i) logtan (b — D) =logtan 79° 576 0-75 192
logsec 4 =logsec 52°16™-9 0-21 340
- logtan p = 0-96 532
S AR =p = 83° 49,
agreeing with the previous calculations of 4B,

15. The trigonomeirical ratios for small angles,
If 8 is a small angle and expressed in circular measure, we have

the well-known approximate formulae:
§in § = fradians; cosf=1; tan = @radians

eeeenn(35).
Now 1 radian = 57° 17" 45" m
= 34373
= 206265,
v_ 1 .
so that 17 = 506365 radian,
1
PR S .
and 1" = 3433 radian, spproximately.

Hence, by the first aﬂ.ﬂmﬁou of (35), when § is successively 1”
and 17,

3 o H r
ginl” = mgwfzfmm eresns AN “-uu
a1 m
and ginl" = 3458 ..:..Awd.

2 SA
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If 6" denotes the number of seconds of arc in @ radiang, then

mi\
& == Mo[mw 55 and consequently
. m‘\
S8 8 = 206085°
which may be written
gin g’ = @' sin1” ... (38).
Similarly, sind" =@#s&nl” 0 L, (39),

S_Kiw ¥ 1s expressed in minutes of are,
In T similar way, we find
. tan 8" = 8" gin 1",
In spherical astronomy, certain angles are frequently ex-

pressed in terms of hours, minutes and seconds of time,
according to the following relations:

24 hours = 360°; 12 = 15°; 1™ = 15" and 18 = 15"

...... (40).
Thus we obtain the approximate formulae

sin 1® = sin 15° = 15sin 1’
W gin 1% =sgin 15" = 15sin1* ... (42).

If H is a small angle, which, when expressed in minutes of
time, will be denoted by Hm, then

| sin H = Hogin 18 = 15H=gin 1 ... (43).
Similarly, i we express H in terms of seconds of time, we have
| sin H = Hosin 18 = 15Hs sin 17 ...... (44).

_
Hrmﬁ results will be of use in subsequent chapters.

|
16. %%3@3“@ and Nagpier's enalogies.

For reference, we give the following formulae, originally due
to Delambre, and known as Delambre’s analogies:

sin Yo sin § (4 ~ B) = cos §C sin § (@~ b) ......(45),
sinfccos} (4~ B)=sin{0sin} (a+ &) ...... (486),-
costesin (4 + By =cos{Ccos} (@—b)...... (47),.
cosiccos} (4 + B)=sin4Ccos} (a+b)...... (48).

H.rmmnmoﬂu&m.omhmm@mﬂ%@m&d@mmwoﬁﬁg mﬁb&wﬁmoﬂn&g
already discussed in the previous pages. :
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Taking these equations in pairs, we obtain Napier's analogies:
tan} (@ + b) nmwwwmwwwgwa ...... (49),
tan} (@ — b) ummmmwltwwg? ...... (50),
tan} {4+ B) = Mmmwﬁww Y S (51),
tan} (4 — B)= www Mm,.Maww cob20  weenne(52).
EXERCISES

1. Tn the spherical triangle ABC, C= 90°, a=119°46"36” and
B = 52° 25’ 33", Calculate the values of &, ¢ and 4. .
[Ans. 48° 26’497, 108° 140" and 113° 10" 4671

9, In the triangle ABC, a = 57° 227 117, 5 = 72° 12/ 197 and U = 84° 1" 49",

Calculate the values of ¢, 4 and B. )
[Ans. 83°46° 327, 57° 40° 45" and 72° 49" 50™.]

8. In the triangle ABC, ¢=90°, B =62°20"42 and o = 136° 19" 07,

Caloulate the values of 4, C and b. -
[Ans. 139°46° 137, 69° 14’ 45” and 71° 18" 9]

4. Two ships X and ¥ aresteaming along the parallels of latitude #wﬂmz. and
15° § reapectively, in such & way that at any given momenpt the two ships are
gewoguﬁna&g&g%g.hnwuum&%.ﬁwﬁwﬁoﬁumbnﬁﬁm?&
of ¥.

¥ ith the same latitude $;
m.kgmmﬁaowgcngoaﬁwngﬁg a .
the difference of longitude between 4 and B is 2. Prove that .ﬂ.: gomw“m_..onn
latitude reached by the grest circle 4B is tan~* (tan ¢ sec 1), and (ii) the distance
meagured along the parallel of latitude between A and B exceeds the great
circle distance AB by ) .
2 cosec 17 [F cos ¢ — sin~* (sin I cos ¢)] nautical miles.

i ircle joining a place 4
6. The most southerly latitude reached by ﬂ.,o great cire :
on the eqnator to s place B in south latitude ¢ is ¢,. Prove that the difference
of longitude between 4 and B is 80° + cos™? (tan ¢ cot &, ).
it ively: ' 8, Long. 110° 10'E
. The positions of 4 and B are respectively: H.m”*. 39° wo 8,
mBM Lat. .M*o wowm. Long. 46° 20° W. Show that, if & ship steams from h to B
by the shortest possible route without crossing the pazallel of 62° 5, the distance
steamed is 5847-6 nautical miles. .

- ﬁsgmnngub#&mmo&w;uoﬁugn#wugﬁe&%?ng
2=z




