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AGN – Physics of the Ionized Gas

• Physical conditions in the NLR
• Physical conditions in the BLR
• LINERs
• Emission-Line Diagnostics
• High-Energy Effects
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Evidence for Photoionization

- continuum and
Hβ luminosity 
correlated over a 
huge range 

(Yee, H. 1980, ApJ, 241, 894)
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Emission-Line Diagnostics for Seyfert NLRs

• T = 10,000 – 20,000 K from [O III] lines à photoionization 
(shock heating gives temperatures ≈ 40,000 K)

• Emission lines span a wide range in ionization potential (IP):
    - IP needed to create [O I]: 0 eV, [Fe X IV]: 361 eV
    à Power-law SEDs with substantial X-ray contribution
• UV radiation forms a classic H II region on the “front face”
• X-rays penetrate deep into the cloud to create a “partially-ionized 

zone” (PIZ): N(H II)/N(H I) ≈ 0.1 to 0.2
– In the PIZ, elements are neutral or singly ionized
– substantial emission from HI, [O I], [N II], [S II], Mg II

    à Large column densities (NH = 1019 – 1021 cm-2)
• HST resolved spectroscopy shows wide range in number density.
    à nH = 102 - 107 cm-3 (from lines with a range in critical density)
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Collisional Excitation of H Lines in the PIZ

• X-rays penetrate deep into the cloud to create high-energy 
(“suprathermal”) electrons, which cause multiple ionizations in 
the mostly neutral gas.

• Suprathermal electrons also collisionally excite the n = 1 level in 
hydrogen:

• Lα is collisionally enhanced relative to the other H lines

• Lα/Hβ can reach ~50 in the NLR, compared to recombination 
value of 33.

• Hα is the next most collisionally enhanced line (n = 1 to n = 3)
• Hα/Hβ can reach ~ 3.1 in the NLR, compared to the 

recombination value of ~2.85

 
4πjν = nenH0 q12hνLα  ,  where q is the collision rate
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Results from NLR models
• Photoionization codes like CLOUDY contain all of the 

important physics (X-ray ionization of the PIZ, collisional 
excitation and ionization, Auger effect, charge exchange, etc.)

• Input parameters: U (or luminosity and distance for spatially 
resolved regions), continuum shape (SED), number density (nH), 
abundances, column densities (NH).

• Models indicate abundances are approximately solar
– previous “low abundance” cases due to a high-density 

component, which suppresses the forbidden lines (CNO, etc.) 
• Multiple components (with different U, nH) are usually needed at 

each position.
• Power-law interpolation between UV and X-ray (αν ≈ 1.5) works 

- no need for huge EUV bump (BBB)
• Dust within the clouds can suppress resonance lines (esp. Lyα)
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Ex) STIS Long-Slit Spectra of the NLR in NGC 4151
(Kraemer et al. 2000, ApJ, 531, 278)

Spectra from
two regions

[O III] Image
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Model Results from Two Regions

Spectral 
Bin

Log U ne (cm-3) NH(cm-3) % Hβ Note

0.1-0.3 NE -2.67 1.2 E4 1.6 E 21 50% RB

-3.0 1.0 E7 5.6 E 19 25% MB

-1.08 1.0 E5 5.6 E 20 25% MB

0.3-0.5 NE -2.67 1.2 E4 1.6 E21 90% RB

-1.36 6.0 E2 5.3 E 20 10% MB

MB – matter bounded (optically thin)
RB – radiation bounded (optically thick)
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Comparison of Models and Observations
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Physical Diagnostics of the BLR
• No forbidden lines, some semi-forbidden lines:

– No broad [O III] λλ4959, 5007 à nH ≥ 108 cm-3

– Broad C III] λ1909: à nH ≤ 1011 cm-3

• Cooling is primarily done by recombination lines (H and He) and collisional 
excitation of permitted  lines (e.g., C IV, N V in UV; Fe II in UV and optical)

• X-ray ionization (also important in NLR)
     -  ejected outer shell (suprathermal) electrons causes ~6 collisional ionizations 
      - Auger effect: X-ray photon can eject multiple electrons

• Fe II, Mg II, C I, and O I are enhanced in the PIZ à NH = 1022 - 1023 cm-2

• BLR is not resolved: U = 10-2 to 10-1 from photoionization models
•  Dust cannot survive in the BLR. Seyferts have “normal” abundances

 

Ex) O+2 (1s2 2s2 2p2  3P) +  hν →  O+3(1s 2s2 2p2  2P) +  e-

− leaves O+3  in excited state
   O+3(1s 2s2 2p2  2P) →  O+4 (1s2 2s2  1S) +  e-  (autoionization)
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The “ Lα/Hβ’’ Problem
• Baldwin (1977) discovered the “Lα/Hβ’’ problem by piecing 

together spectra of QSOs at different redshifts
     - Lα/Hβ ≈ 5 – 10 for the BLR, whereas recombination gives ~33
     - What’s going on?
• BLR clouds have large column and number densities.
• Lα scatters throughout the PIZ in BLR clouds, populating the n = 

2 level
• Hβ (and Hα) are collisionally excited in the PIZ, and therefore 

enhanced by factors of 3 – 6 over recombination values
• Lα is further reduced by ionization of electrons in n = 2 level
• Currently, there is still an “Fe II” problem: models underpredict 

the amount of Fe II emission
     - huge number of levels, so radiative transfer (radiative pumping, 

resonance fluorescence, and transition coincidences) and 
collisional excitations are complicated
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Fe II Partial Grotrian Diagram
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BLR “Cloud” Photoionization Model

(Osterbrock & Ferland, p. 364)
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BLR Line Ratios

(Osterbrock & Ferland, p. 365)

- note: no prediction of Fe II emission … hmmm
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BLR Parameters from Photoionization Models

  

i  Sizes: typically ~10 light days (in diameter) for Seyfert 1s
     1) Reverberation mapping – use time lag (τ) of emission lines
         with respect to continuum variations: r = cτ
     2) Photoionization models: Determine ionization parameter and
         density from models. Determine Qion  from luminosity and SED.

      U =  
Qion

4πr2cne

 →  solve for r.    To 1st order, r ∝  L

  

i  Mass of ionized gas in BLR:
   L(Hβ) =  nenpαHβ

eff hνHβVε     where ε = filling factor

   MBLR ≈ Vεnpmp =
L(Hβ)mp

neαHβ
eff hνHβ

≈ 0.7 L42(Hβ) 
1010cm−3

ne

 M

i  Filling factor ε: assume a spherical BLR (V =  4
3 πr3)

   From above: ε =
L(Hβ)

nenpαHβ
eff hνHβV

≈ 0.01− 0.1



15

• Covering factor – fraction of sky covered by BLR clouds
- assume all ionizing photons are absorbed and use predicted 

equivalent width of emission line W(Hβ)

 

LHβ = hνHβ

αHβ
eff (H0,T)

αB(H0,T)
Lν

hν
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∞
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LHβ = Lλ (λ4861)Wλ (Hβ) = Lν(λ4861)
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Assume power - law continuum :  Lν = Cν−n

Then Wλ (Hβ) =
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568
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( for a covering factor of 1)
So for n = 1,  the predicted EW is Wλ (Hβ) ≈ 106 Ang.

The covering factor is :  Cf =
Wobs(Hβ)
Wp(Hβ)

=
20

106
≈ 0.2
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LINERs
• [O III]/Hβ < 3 (like galaxies with H II nuclei)
• [O I]/Hα > 0.05 (like the NLR in Seyferts)
• Original suggestion: shock heating or hot stars
• However, subsequent evidence indicates photoionization by 

AGN continuum (including X-rays) is likely for most
• U = 10-3 to 10-5 for LINERs (rather than 10-1 to 10-2 for Seyferts)
• Probably due to low luminosity of continuum source, rather than 

higher density or greater distance

• Further evidence for AGN: ~20% of LINERs show a mini BLR 
(type 1 LINERs)

• Transition objects: may be combination of starburst and AGN

ion
2

e

QU   
4 r cn

=
π



17

Emission-Line Diagnostics (BPT Diagram)

x - H II galaxy
   - Seyfert NLR
   - “pure” LINER
   - transition object

(Ho, Filippenko, & Sargent, 1997, ApJS 112, 315)

(H II + LINER)
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Refined BPT Diagrams (85,000 galaxies from SDSS)

(Kewley et al. 2006, MNRAS, 372, 961 )

- H II (starburst) sequence from low to high metallicity (left to right)
- Composite (“transition”) objects between blue and red lines in 1st figure
- Seyfert/LINER transition given as middle blue line in 2nd and 3rd figures
      (increasing ionization from lower right to upper left)
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High Energy Processes/ X-ray Spectra of AGN
• X-ray spectra of AGN show evidence for hot photoionized 

gas (T = 30,000 - 100,000 K; U = 1 - 10)
• Heating:

–  Photoionization of inner and outer shell electrons
–  Collisional ionization from ejected outer-shell (suprathermal) 

electrons
• Cooling:

– Recombination lines: dominant in X-ray spectra (transitions to inner 
shells: n = 1,2,3 corresponding to K, L, M)

– Fluorescence after ejection of inner-shell electrons: competes with 
Auger effect

– Radiative recombination continuum (RRC), e.g., Lyman continuum 
(LC) : narrow, since kT << I.P.

– Two-photon: significant, since critical density for 2s in H-like heavy 
elements is > 1014 cm-3.

– Photoexcitation important due to many lines in spectra.
– Collisional excitation: not so important in X-ray spectra: kT << χ
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X-ray opacities

(Osterbrock & Ferland, p. 283)

• If seen in absorption , we can see the effects of absorption edges and 
scattering on the ionizing continuum: τν= aνNion

• The gas starts to become “Compton thick” at Ne ~ 1/aν~ 1024 cm-2
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Soft X-ray Emission-Line Spectra

(Osterbrock & Ferland, p. 287)

• Chandra images reveal extended X-ray gas in the NLR of NGC 1068
• Chandra spectra reveal emission lines  - mostly H and He-like.
• Observed lines can be matched by photoionization models with U ≈ 1 -10

C VI

r i f
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(Morales 2002)

He-like Triplet Lines (rif): O VII

• Triplet lines are sensitive to density, since the intercombination and forbidden 
lines can be collisionally de-excited.

• Unfortunately, the critical densities are rather high: ne ≈ 1010 cm-3, so not 
much help for the NLR (useful for higher density gas).
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High-Energy Processes - Inner Shell Ionization

(Osterbrock & Ferland, p. 280)

• Inner shell ionization - vacancy filled by ejection of electrons (Auger effect) 
and/or fluorescent emission 

• Yield = probability of filling K-shell vacancy by emission of Kα line.
• Fe (Z = 26) is abundant and has a high yield: Fe Kα is strong in hard X-ray 

region.
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(Osterbrock & Ferland, p. 282)

• Energy of Fe Kα increases with ionization state, as there is less “screening” of nucleus 
by outer electrons with non-zero wave functions close in.

• With high-resolution spectroscopy, one can determine ionization state of gas from Fe 
peak (Fe XVIII and lower often known as “cold iron” by X-ray astronomers).
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(Osterbrock & Ferland, p. 349)

• Relativistic disk fit to Fe Kα profile, velocity up to ~0.4c
• Rest-frame line center at 6.4 keV - consistent with emission from cold accretion disk.
• Peak slightly blueshifted due to Doppler boosting of approaching gas.
• Long red tail due to GR: can measure BH mass and spin.

Fe Kα Emission from MCG-6-30-15


