Thermal Equilibrium

- Energy conservation equation
- Heating by photoionization
- Cooling by recombination
- Cooling by brehmsstralung
- Cooling by collisionally excited lines
- Collisional de-excitation
- Detailed Balancing
- Critical Densities
- Comparison of heating and cooling rates

Energy conservation

- Heating provided by photoionization of electrons
- Cooling provided by:
 - 1) recombination lines (mostly H, He)
 - 2) brehmsstralung (free-free radiation)
 - 3) collisional excitation of heavy ions, and subsequent radiation
- Thermal equilibrium:

$$G = L_r + L_{ff} + L_c$$

- (G energy gained by photoionization, L energy lost by radiation due to the above processes)
- Ionization: creates an electron with energy $\frac{1}{2}$ mv_i² = h(v-v₀)
- Recombination: electron gives up energy = $\frac{1}{2}$ mv_f²
- Net energy that goes into heating: $\frac{1}{2}$ mv_i² $\frac{1}{2}$ mv_f²

Heating

- Heating provided by photoionization of electrons
- For a pure hydrogen nebula:

$$G(H) = \text{energy input/vol/sec} \text{ (ergs s}^{-1}\text{cm}^{-3}\text{)}$$

$$G(H) = n_{H^0} \int_{v_0}^{\infty} \frac{4\pi J_v}{hv} h(v - v_0) a_v(H^0) dv$$

= $n_e n_p \alpha_A(H^0, T) \frac{3}{2} kT_i$ (using ionization equil.)

 T_i is the initial electron temperature

- T_i (electron temperature) is low close to the star, as hv₀ photons are absorbed in the inner nebula first
- However, as τ increases, T_i increases due to absorption of photons with energies $> h\nu_0$

Energy Loss by Recombination

$$L_{R}(H) = n_{e}n_{p} kT \beta_{A}(H^{0},T)$$

where β_A = recomb. coeff. averaged over kinetic energy

$$\beta_{nL}(H^0,T) = \frac{1}{kT} \int_0^\infty v \, \sigma_{nL}(H^0,v) \, f(v) \, \frac{1}{2} m v^2 dv$$

On the spot approximation:

$$L_{R}(H) = n_{e}n_{p}kT\beta_{B}(H^{0},T)$$

where β_B summed over all states but ground

For a pure H Nebula:

 $G(H) \approx L_R(H)$ (free-free radiation not very important)

For recombination of He:

-same formulae as for heating and cooling of H

Recombination of other elements:

-usually not important, since heating and cooling proportional to ionic densities (and abundances are low)

Brehmsstralung (Free-Free Radiation)

$$L_{\rm ff} = 1.42 \times 10^{-27} Z^2 T^{1/2} g_{\rm ff} n_e n_+$$

where g_{ff} = Gaunt factor, weak function of n_e and T

- quantum mechanical correction for classical case
- between 1.0 and 1.5 for H II regions
- brehmsstralung usually not very important at nebular temperatures; recombination and collisional excitation dominates (but dominant cooling mechanism in $T = 10^7 10^8$ K intracluster gas)

Collisionally Excited Radiation

- Dominated by collisional excitation of low-lying levels of heavy elements (e.g., O⁺,O⁺⁺,N⁺)
- Excited levels are mostly metastable, which result in forbidden or semi-forbidden lines (low A values)
- $\Delta E \approx kT$, so very important coolants, despite lower abundance
- Consider two levels: lower (1) and upper (2)
- Collision cross-section:

$$\sigma_{12}(v) = \frac{\pi h^2}{m^2 v^2} \frac{\Omega_{12}}{\omega_1}$$
 (for $\frac{1}{2} m v^2 > \chi$ where $\chi = h v_{12}$)

where Ω_{12} = collision strength from levels 1 to 2

(essentially constant with temperature at these electron velocities)

 ω_1 = statistical weight for level 1

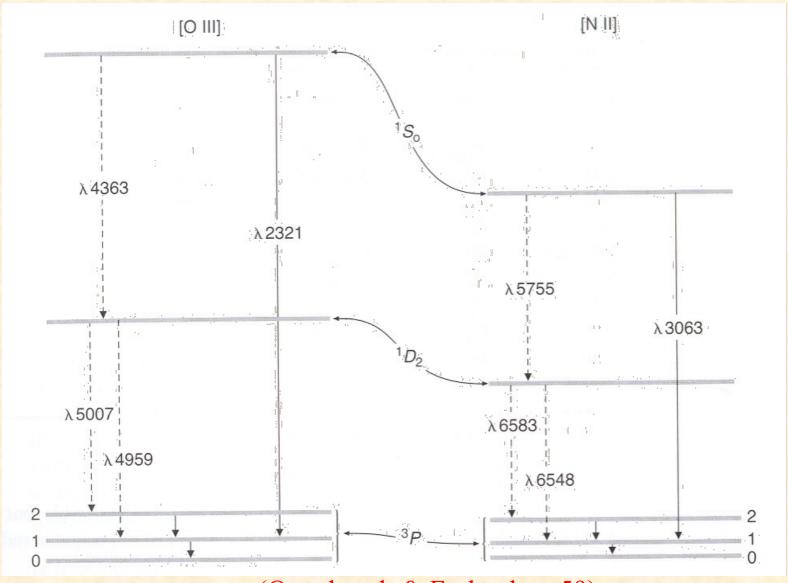
Collision Strengths

Ion	$^{3}P, \ ^{1}D$	${}^{3}P, {}^{1}S$	$^{1}D, \ ^{1}S$	$^{3}P_{0}$, $^{3}P_{1}$	$^{3}P_{0}, ^{3}P_{2}$	$^{3}P_{1}$, $^{3}P_{2}$	${}^{3}P, {}^{5}S^{o}$
N ⁺	2.64	0.29	0.83	0.41	0.27	1.12	1.27
O^{+2}	2.29	0.29	0.58	0.55	0.27	1.29	0.18
Ne^{+4}	2.09	0.25	0.58	1.41	1.81	5.83	1.51
Ne^{+2}	1.36	0.15	0.27	0.24	0.21	0.77	_
S^{+2}	6.95	1.18	1.38	3.98	1.31	7.87	2.85
Ar^{+4}	3.21	0.56	1.65	2.94	1.84	7.81	_
Ar^{+2}	4.83	0.84	1.22	1.26	0.67	3.09	-

(Osterbrock & Ferland, p. 53)

calculated quantum-mechanically

Ex) Collision strength for [O III] $^{3}P \rightarrow ^{1}D = 2.29$


Radiative Transitions:

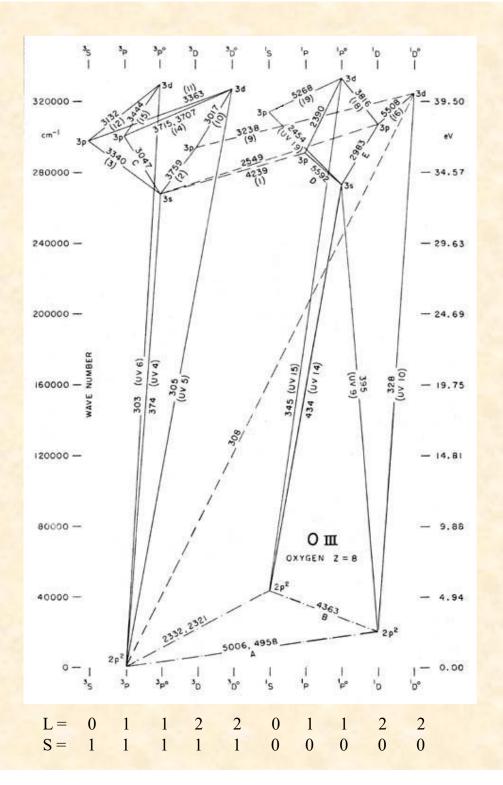
$$^{1}D_{2} \rightarrow {}^{3}P_{2}: \lambda 5007$$

$${}^{1}D_{2} \rightarrow {}^{3}P_{1}: \lambda 4959$$

$$J = 1$$

Ex) Energy-Level Diagram for [O III], [N II]

(Osterbrock & Ferland, p. 59)


Partial Grotrian Diagram for [O III]

O⁺² (Carbon-like):

- Ground: $1s^22s^22p^2$
- 2 outer shell electrons
- L-S coupling

from

Partial Grotrian Diagrams of Astrophysical Interest, Moore, C.E. & Merrill, P.W., NSRDS National Bureau of Standards, Vol. 23 (1968)

Collisional De-Excitation

- detailed balancing: populations of levels remain constant in equilibrium
- rate of population of a level = rate of depopulation
- relation between cross sections for collisional excitation and de-excitation can be derived from thermodynamic equilibrium (Osterbrock & Ferland, p. 50):

Consider a two-level transition (1- lower, 2 - upper):

$$\omega_1 v_1^2 \sigma_{12}(v_1) = \omega_2 v_2^2 \sigma_{21}(v_2)$$

where $\frac{1}{2} m v_1^2 = \frac{1}{2} m v_2^2 + \chi$ (where $\chi = h v_{12}$)

So:
$$\sigma_{21}(v_2) = \frac{\pi h^2}{m^2 v_2^2} \frac{\Omega_{12}}{\omega_2}$$
 (similar to formula for $\sigma_{12}(v_1)$

Collision Rates

The collisional de - excitation rate is:

de-excitations/vol/sec =
$$n_e n_2 q_{21}$$

$$q_{21} = \int_{0}^{\infty} v \, \sigma_{21} f(v) dv$$
 $(q_{21} \text{ in cm}^{3} \text{s}^{-1})$

(note similarity to recombination)

The collisional excitation rate is:

collisions / vol / sec = $n_e n_1 q_{12}$

where
$$q_{12} = \frac{\omega_2}{\omega_1} q_{21} e^{-\chi/kT}$$

Note: q_{ij} is a function of (σ_{ij}, v) which is a function of

$$(\Omega_{ij}, v)$$
 or (Ω_{ij}, T)

Energy Loss by Collisional Processes

1) Single excited level, low n_e

$$L_{c} = n_{e}n_{1}q_{12}hv_{12}$$
 (every excitation followed by radiative transition)

2) Single excited level, higher n_e

$$n_e n_1 q_{12} = n_e n_2 q_{21} + n_2 A_{21}$$

collisions/vol/sec = # de-excitations/vol/sec + # transitions/vol/sec

- solve above eqn. for $\frac{n_2}{n_1}$ to get relative level populations

Solve for population of level 2:

$$n_2 = n(X) - n_1$$
 $n(X) = number density of element X$

$$L_{c} = n_{2}A_{21}hv_{12}$$

- 3) For multiple levels, use detailed balancing:
- multiple equations for each level, # in = # out

For each level i of an ion X:

$$\sum_{j \neq i} n_{j} n_{e} q_{ji} + \sum_{j > i} n_{j} A_{ji} = \sum_{j \neq i} n_{i} n_{e} q_{ij} + \sum_{j < i} n_{i} A_{ij}$$

(transitions into i) = (transitions out of i)

together with:

$$\sum_{i} n_{i} = n(X)$$

can be solved for the population in each level n_i.

$$L_{c} = \sum_{i} n_{i} \sum_{j < i} A_{ij} h v_{ij}$$

Critical Density

- For a given level i, n_c is the density at which # radiative transitions/vol/sec = # de-excitations/vol/sec

Let $n_e = n_c$ when this occurs:

$$n_i \sum_{j < i} A_{ij} = n_c n_i \sum_{j \neq i} q_{ij}$$

$$n_{c}(i) = \frac{\sum_{j < i} A_{ij}}{\sum_{j \neq i} q_{ij}}$$

-At densities $n_e > n_c$, line emission from $i \rightarrow j$ is significantly suppressed.

Transition Probabilities ("A" values)

Transition	probabilities	for C-like 2	$2p^2$ and	Si-like	$3p^2$ ions	,
------------	---------------	--------------	------------	---------	-------------	---

	[N	II]	[O III]		
Transition	$A(s^{-1})$	λ (Å)	$A (s^{-1})$	λ(Å)	
$^{1}D_{2}-^{1}S_{0}$	1.0	5754.6	-1.6	4363.2	
$^{3}P_{2}-^{1}S_{0}$	1.3×10^{-4}	3070.8	6.1×10^{-4}	2331.4	
${}^{3}P_{1}-{}^{1}S_{0}$	3.3×10^{-2}	3062.8	2.3×10^{-1}	2321.0	
$^{3}P_{2}=^{1}D_{2}$	3.0×10^{-3}	6583.4	2.0×10^{-2}	5006.9	
${}^{3}P_{2} = {}^{1}D_{2}$ ${}^{3}P_{1} - {}^{1}D_{2}$	9.8×10^{-4}	6548.0-	6.8×10^{-3}	4958.9	
${}^{5}P_{0}-{}^{1}D_{2}$	3.6×10^{-7}	6527.1	1.7×10^{-6}	4931.1	
$^{3}P_{1}^{-3}P_{2}$	7.5×10^{-6}	$121.89 \ \mu { m m}$	9.7×10^{-5}	$51.814~\mu\mathrm{m}$	
${}^{3}P_{0} - {}^{3}P_{2}$	1.1×10^{-12}	$76.5 \mu m$	3.1×10^{-11}	$32.661 \mu \text{m}$	
$^{3}P_{0}^{-3}P_{1}^{2}$	2.1×10^{-6}	$205.5 \mu m$	2.7×10^{-5}	$88.356 \mu m$	
${}^{3}P_{2}-{}^{5}S_{2}^{o}$	$1.3 \times 10^{+2}$	2142.8	$5.8 \times 10^{+2}$	1666.2	
${}^{3}P_{1}^{2} - {}^{5}S_{2}^{0}$	$5.5 \times 10^{+1}$	2139.0	$2.4 \times 10^{+2}$	1660.8	

(Osterbrock & Ferland, p. 56)

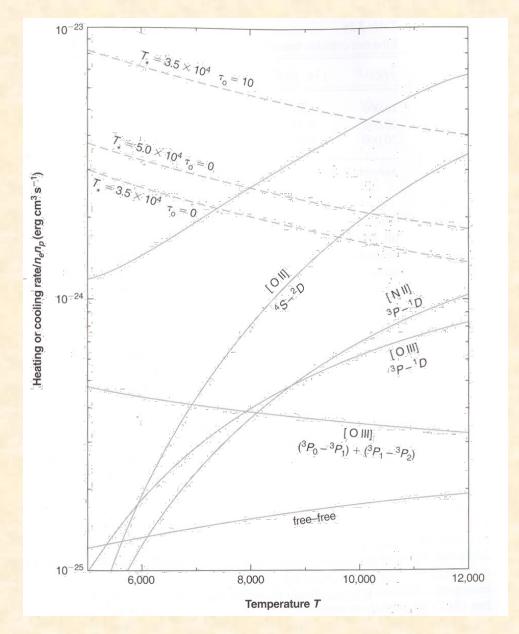
Critical Densities for Some Important Levels

Cuitinal	damaitian	C	11' - ' 1	1
Critical	densities	Tor	collisional	deexcitation

Ion	Level	$n_e (\mathrm{cm}^{-3})$	Ion	Level	$n_e (\mathrm{cm}^{-3})$
CII	${}^{2}P_{3/2}^{o} \ {}^{3}P_{2}^{o} \ {}^{1}D_{2}$	5.0×10^{1}	O III	$^{1}D_{2}$	6.8×10^{5}
C III	${}^{3}P_{2}^{o}$	5.1×10^{5}	O III	$^{3}P_{2}$	3.6×10^{3}
NII	$^{1}D_{2}^{2}$	6.6×10^4	OIII	${}^{3}P_{1}$	5.1×10^{2}
N II	$^{3}P_{2}$	3.1×10^{2}	Ne II	${}^{2}P_{1/2}^{o}$	7.1×10^{5}
NII	$^{3}P_{1}$	8.0×10^{1}	Ne III	$^{1}D_{2}^{^{1/2}}$	9.5×10^{6}
N III	$^{2}P_{3/2}^{o}$	1.5×10^{3}	Ne III	$^{3}P_{0}$	3.1×10^{4}
N IV	$^{3}P_{2}^{o}$	1.1×10^{6}	Ne III	${}^{3}P_{1}$	2.1×10^{5}
OII	${}^{2}P_{3/2}^{o}$ ${}^{3}P_{2}^{o}$ ${}^{2}D_{3/2}^{o}$	1.5×10^{4}	Ne V	$^{1}D_{2}$	1.3×10^{7}
OII	$^{2}D_{5/2}^{o}$	3.4×10^{3}	Ne V	$^{3}P_{2}$	3.5×10^{4}
	5/2		Ne V	$^{3}P_{1}$	6.2×10^{3}

NOTE: All values are calculated for T = 10,000 K.

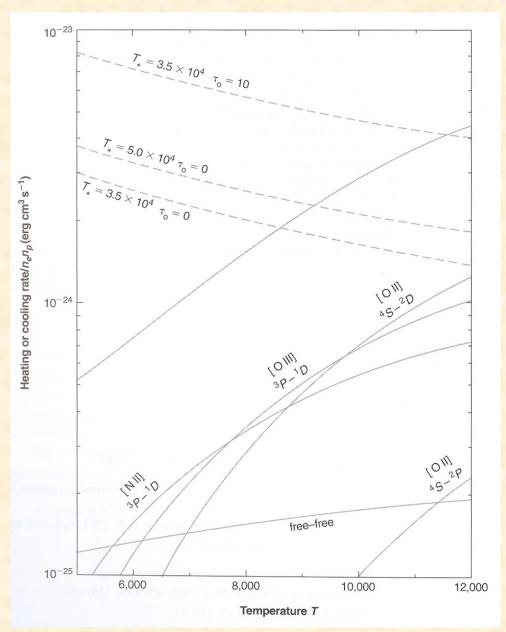
(Osterbrock & Ferland, p. 60)


Heating and Cooling Rates for a Low-Density Gas

effective heating = cooling $G - L_R = L_{ff} + L_c$

Per n_en_p -

 $G-L_R$: dashed


 $L_{\rm ff} + L_{\rm c}$: solid

(Osterbrock & Ferland, p. 62)

Heating and Cooling Rates for $n_e = 10^4 \text{cm}^{-3}$

Collisional de-excitation raises temperatures

(Osterbrock & Ferland, p. 63)