Emitted Spectrum

- Summary of emission processes
- Emissivities for emission lines:
 - Collisionally excited lines
 - Recombination cascades
- Emissivities for continuum processes
 - recombination
 - brehmsstrahlung
 - H I two-photon
- Radiative transfer effects
- Bowen Resonance-Fluorescence

Summary of Emission Processes

- Emission Lines:
 - 1) Recombination:
 - essentially just H I, He I, He II due to abundances
 - 2) Collisionally excited
 - levels above ground where $hv \approx kT$
 - forbidden lines (e.g., [O III], [N II], in the optical, IR)
 - semi-forbidden (e.g., C III] in the UV)
 - permitted (e.g., C IV, Si IV, Mg II in the UV)
- Continuum:
 - 1) brehmsstrahlung
 - 2) continuum recombination (H I, He I, He II)
 - 3) H I two-photon

Emissivities for Emission Lines

- want j_{ij} (ergs s⁻¹cm⁻³) for transition $i \rightarrow j$ (Note Osterbrock & Ferland use $4\pi j$ for emissivity)

Collisionally excited lines :

- calculate the level population from detailed balancing: $j_{ii} = hv_{ii}n_iA_{ii}$ (see previous lecture to get n_i)

Recombination lines:

- use cascade matrices
- transitions from nL to n'L' (instead of ij notation)

Recombination for H I - Cascades

(Osterbrock & Ferland, p. 19)

Cascades

The relative probability of a direct transition from level nL to level n'L' is :

$$\begin{split} P_{nL,n'L'} &= \frac{A_{nL,n'L'}}{\sum\limits_{n''=1}^{n-1}\sum\limits_{L''}} A_{nL,n''L''} \\ \text{Let } C_{nL,n'L'} &= \text{ cascade matrix} \\ &= \text{ transition probability for all possible routes} \\ &\text{ from nL to n'L'} \\ \text{For n'} &= n - 1: \quad C_{nL,n'L'} = P_{nL,n'L'} \\ \text{To obtain cascade matrix} : C_{nL,n'L'} &= \sum\limits_{n''>n'}^{n}\sum\limits_{L''}^{n} C_{nL,n''L''} P_{n''L'',n'L'} \\ \text{- the cascade matrix is fixed for a given ion (e.g., H I)} \end{split}$$

To get the level populations :

- consider transitions to and from level nL :

$$n_{e}n_{p}\alpha_{nL}(T) + \sum_{n'>n}^{\infty}\sum_{L'}n_{n'L'}A_{n'L',nL} = n_{nL}\sum_{n''=1}^{n-1}\sum_{L''}A_{nL,n''L''}$$
recomb to nL + # cascades to nL - # cascades

recomb to nL + # cascades to nL = # cascades from nL $(\Delta L = \pm 1)$

The equilibrium equation becomes :

$$n_{e}n_{p}\sum_{n'=n}^{\infty}\sum_{L'=0}^{n'-1}\alpha_{n'L'}(T) C_{n'L',nL} = n_{nL}\sum_{n''=1}^{n-1}\sum_{L''}A_{nL,n''L''}$$

- $n_{n'L'}$ has been eliminated; n_{nL} can be solved for iteratively once the ionization balance is determined The emissivity is then:

$$j_{nn'} = hv \sum_{L=0}^{n-1} \sum_{L'=L\pm 1} n_{nL} A_{nL,n'L'}$$

(ergs s⁻¹ cm⁻³)

Case A (optically thin): all levels included Case B (optically thick): all Lyman transitions with $n \ge 3$ are converted to higher order lines plus Lyman α or two - photon emission - for τ (hv₀) = 1, τ (Ly α) = 10⁴, τ (Ly β) = 10³

 \rightarrow No Ly β , Ly γ , etc. emission from typical nebulae

Density effects for recombination :

- collisions change nL to nL' (small energy difference)
- the collision cross section is larger for higher n
- for n ≥ 15 (H I), the population is the same as for thermodynamic equilibrium:

 $n_{nL} = \frac{(2L+1)}{n^2} n_n$ ($n_n =$ density of ion at quantum level n)

We can define an effective recombination coefficient :

$$n_{p}n_{e}\alpha_{nn'}^{eff} = \sum_{L=0}^{n-1}\sum_{L'}n_{nL}A_{nL,n'L'}$$

so that $\alpha_{nn'}^{eff}$ is the # transitions per $n_p n_e$ (from n to n')

H I Case A Recombination

H I recombination	n lines (Case A, low	-density limit)	A DAM OF SCHOOL			
	T					
	2,500 K	5,000 K	10,000 K	20,000 K		
$\frac{4\pi j_{\mathrm{H}\beta}/n_e n_p}{(\mathrm{erg}\ \mathrm{cm}^3\ \mathrm{s}^{-1})}$	2.70×10^{-25}	1.54×10^{-25}	8.30×10^{-26}	4.21×10^{-26}		
$\alpha_{\mathrm{H}\beta}^{e\!f\!f} (\mathrm{cm}^3\mathrm{s}^{-1})$	$6.61 imes 10^{-14}$	3.78×10^{-14}	2.04×10^{-14}	1.03×10^{-14}		
n sa Trada na tartina	Balmer-1	ine intensities relativ	ve to $H\beta$			
іна/інв	3.42	3.10	2.86	2.69		
İHy/İHB	0.439	0.458	0.470	0.485		
ins/ins	0.237	0.250	0.262	0.271		
<i>інь/ інв</i>	0.143	0.153	0.159	0.167		
іня/ <i>інв</i>	0.0957	0.102	0.107	0.112		
<i>і</i> но/ <i>і</i> нв	0.0671	0.0717	0.0748	0.0785		
<i>і</i> н10/ <i>і</i> нв	0.0488	0.0522	0.0544	0.0571		
<i>і</i> н15/ <i>і</i> нв	0.0144	0.0155	0.0161	0.0169		
$j_{\rm H20}/j_{\rm H\beta}$	0:0061	0.0065	0.0068	0.0071		
	Lyman-l	ine intensities relativ	ve to $H\beta$			
$j_{Llpha}/j_{{ m H}eta}$	33.0	32.5	32.7	34.0		

(Osterbrock & Ferland, p. 72)

H I Case B Recombination

H I recombination lines (Case B)

					Т				
		5,000 K			10,000 K			20,000 K	
$n_e ({\rm cm}^{-3})$	10 ²	10 ⁴	10 ⁶	10 ²	10 ⁴	10 ⁶	10 ²	10 ⁴	10 ⁶
$4\pi j_{\rm H\beta}/n_e n_p$ (10 ⁻²⁵ erg cm ³ s ⁻¹)	2.20	2.22	2.29	1.23	1.24	1.25	0.658	0.659	0.661
$\alpha_{\rm H\beta}^{e\!f\!f}$ (10 ⁻¹⁴ cm ³ s ⁻¹)	5.37	5.43	5.59	3.02	3.03	3.07	1.61	1.61	1.62
		B	almer-line i	ntensities r	elative to H	Iβ			
<i>j</i> _{Hα} / <i>j</i> _{Hβ} <i>j</i> _{Hγ} / <i>j</i> _{Hβ} <i>j</i> _{H8} / <i>j</i> _{Hβ} <i>j</i> _{H10} / <i>j</i> _{Hβ}	3.041 0.458 0.251 0.0515 0.01534	3.001 0.460 0.253 0.0520 0.01628	2.918 0.465 0.258 0.0616 0.02602	2.863 0.468 0.259 0.0530 0.01561	2.847 0.469 0.260 0.0533 0.01620	2.806 0.471 0.262 0.0591 0.02147	2.747 0.475 0.264 0.0540 0.01576	2.739 0.476 0.264 0.0541 0.01612	2.725 0.476 0.266 0.0575 0.01834
<i>j</i> _{H20} / <i>j</i> _{Hβ}	0.00657	0.00819	0.01394	0.00662	0.00755	0.01058	0.00664	0.00717	0.00832

(Osterbrock & Ferland, p. 78)

-recombination lines are good reddening indicators, since their intrinsic ratios are approximately constant over a wide range in temperature

Continuum radiation

- Recombination (free-bound): Hydrogen $hv = \frac{1}{2}mv^2 + \chi_{n_1}$ where $\chi_{n_1} = \frac{hv_0}{n_1^2}$
 - Lyman continuum (to $n_1 = 1$): $\lambda \le 912$ Å (UV)
 - Balmer continuum (to $n_1 = 2$): $\lambda \le 3646$ Å (optical)
 - Paschen continuum (to $n_1 = 3$): $\lambda \le 8204$ Å (IR)

$$j_{v} = n_{p}n_{e}\sum_{n=n_{1}}^{\infty}\sum_{L=0}^{n-1}v\sigma_{nL}(H^{0},v) f(v) hv \frac{dv}{dv}$$

• Brehmsstralung (free-free) (important in IR and radio) Total b - f and f - f can be written as : $j_{v}(H I) = n_{p}n_{e}\gamma_{v}(H^{0},T)$ $\gamma = \text{continuous emission coef.}$ $j_{v}(He I) = n_{He^{+}}n_{e}\gamma_{v}(He^{0},T)$ (Osterbrock p. 83) $j_{v}(He II) = n_{He^{+2}}n_{e}\gamma_{v}(He^{+},T)$ • H I two-photon emission

 $j_v(2q) = n_{2^2S} A_{2^2S,1^2S} 2hyP(y)$

where P(y)dy is the probability per decay that a photon is emitted in the range of frequencies yv_{12} to $(y+dy)v_{12}$

- $hv' + hv'' = hv (Ly\alpha)$
- 2 photon continuum peaks at 1/2 energy of Ly α photon (corresponding to $\lambda = 2431$ Å)

Continuous Emission

(Osterbrock & Ferland, p. 86)

Radiative Transfer Effects

- Most emission lines escape a nebula after their creation, since the probability of re-absorption is low
 - \rightarrow for most lines, you can ignore radiative (photo-) excitations
- However, some lines are "optically thick" in most circumstances:
- 1) H I Lyman series
 2) He I triplet state
 - 3) Bowen resonance-fluorescence lines
- In general, the optical depth depends on column density, velocity profile, and geometry
 - H I Lyman Series
 Case A Lyman lines are optically thin
 Case B Lyman lines are optically thick

2) He I triplet state:

- 2³S is metastable (transition to 1¹S is highly forbidden)
- escape can occur by:
- 1) Collision to 2¹S or 2¹P
- 2) Photoionization (particularly by H I Lyα)
- 3) Radiative excitation to $3^{3}P$ (absorption of $\lambda 3889$), followed by radiative transitions:
- \rightarrow He I λ 3889 weakened,
- \rightarrow He I λ 7065 strengthened,
- →He I λ 4471 not affected

(Osterbrock & Ferland, p. 98)

- 3) Bowen Resonance-Fluorescence Mechanism:
- He II Lyα is very optically thick, and scatters throughout nebula
- close correspondence between He II Lya $(\lambda 303.78)$ and O III $2p^2 {}^3P_2 3d {}^3P_2$ $(\lambda 303.80)$
- the He II Lyα photons can thus be captured by ground-state O III (resonance absorption) and converted to UV/optical photons (fluorescence)
- a competing process is ionization of H^0 or He^0 by $\lambda 303.78$
- the relative importance depends on the optical depth (a function of geometry, velocity dispersion, and column)

(Osterbrock & Ferland, p. 101)

Bowen UV/optical Lines

01	III	Resonance-fluorescence	lines
----	-----	------------------------	-------

Transition	Wavelength (Å)	Relative probability	Relative intensity
$3p \ {}^{3}P_{2} - 3d \ {}^{3}P_{2}^{0}$	3444.10	3.74×10^{-3} 1.25 × 10^{-3}	0.277
$3p {}^{3}S_{1} - 3d {}^{3}P_{2}^{0}$ $3p {}^{3}S_{1} - 3d {}^{3}P_{2}^{0}$	3132.86	1.23×10^{-2} 1.23×10^{-2}	1.000
$\begin{array}{c} 3p \ {}^{3}D_{3} - 3d \ {}^{3}P_{2}^{0} \\ 3p \ {}^{3}D_{2} - 3d \ {}^{3}P_{2}^{0} \\ \end{array}$	2837.17 2819.57	1.16×10^{-3} 2.08×10^{-4} 1.22×10^{-5}	0.104 0.019
$3p \ {}^{3}D_{1} - 3d \ {}^{3}P_{2}^{0}$ $3s \ {}^{3}P_{2}^{0} - 3p \ {}^{3}S_{1}$ $3s \ {}^{3}P_{2}^{0} - 3n \ {}^{3}S_{1}$	2808.77 3340.74 3312.30	1.38×10^{-3} 1.79×10^{-3} 1.07×10^{-3}	0.0013 0.136 0.082
$3s {}^{3}P_{0}^{0} - 3p {}^{3}S_{1}$ $3s {}^{3}P_{2}^{0} - 3p {}^{3}S_{1}$ $3s {}^{3}P_{2}^{0} - 3p {}^{3}P_{2}$	3299.36 3047.13	3.57×10^{-4} 2.14 × 10 ⁻³	$0.028 \\ 0.179$
$\frac{3s}{3s} \frac{^{3}P_{1}^{0} - 3p}{^{3}P_{2}} \frac{^{3}P_{2}}{-3p} \frac{^{3}P_{2}}{^{3}P_{1}}$	3023.45 3059.30	7.12×10^{-4} 3.95×10^{-4}	0.060
$3s {}^{3}P_{1}^{0} - 3p {}^{3}P_{1}$ $3s {}^{3}P_{0}^{0} - 3p {}^{3}P_{1}$ $3s {}^{3}p_{0}^{0} - 3p {}^{3}P_{1}$	3035.43 3024.57 3757.21	2.37×10^{-4} 3.17×10^{-4} 3.57×10^{-6}	0.020
$3s {}^{3}P_{1}^{0} - 3p {}^{3}D_{1}$ $3s {}^{3}P_{2}^{0} - 3p {}^{3}D_{1}$ $3s {}^{3}P_{2}^{0} - 3p {}^{3}D_{1}$	3774.00 3810.96	2.67×10^{-6} 1.80×10^{-7}	0.0002 0.0001
$\begin{array}{c} 3s \ {}^{3}P_{1}^{0}-3p \ {}^{3}D_{2} \\ 3s \ {}^{3}P_{2}^{0}-3p \ {}^{3}D_{2} \\ 3s \ {}^{3}P_{2}^{0}-3p \ {}^{3}D_{3} \end{array}$	3754.67 3791.26 3759.87	$\begin{array}{rrr} 7.22 \ \times \ 10^{-5} \\ 2.41 \ \times \ 10^{-5} \\ 5.39 \ \times \ 10^{-4} \end{array}$	0.0049 0.0016 0.037