Emission-Line Diagnostics

- Temperatures from collisionally excited lines
- Temperatures from recombination
- Densities from emission lines
- Ionizing spectrum from "photon counting"
 The Zanstra method: temperature of ionizing star
- Abundances

Emission-Line Diagnostics- Summary

- Temperature Measurements
 - collisional excitation of two upper levels with very different excitation energies
 - comparison of recombination continuum and emission lines
- Density Measurements
 - excitation of two upper levels with similar energies, but different transition probabilities (different critical densities)
- Ionizing Radiation
 - use optically thick nebulae to count ionizing photons
 - presence of high-ionization lines to indicate "hardness' of ionizing radiation
- Abundances

- when temperature and density are fixed, the remaining variable is abundances of the elements

Temperatures from Emission Lines

- Ex) [O III] λλ4959, 5007 arise from low ¹D₂ level,
 [O III] λ4363 from higher ¹S₀ level:
- the ratio of j(5007)/j(4959) is fixed at 3.0 = ratio of radiative transition probabilities (since both from same upper level)
- as the temperature increases, the average electron velocity increases, which increases population of the ¹S₀ level
- Thus, j(4363) increases relative to j(5007) + j(4959) as the temperature increases
- For low densities, the ratio depends only on temperature
- For densities of n_e > 10⁵ cm⁻³, ¹D₂ begins to get collisionally de-excited
- Plugging in the atomic parameters (Osterbrock, chapter 5): $\frac{j_{4959} + j_{5007}}{j_{4363}} = \frac{7.90 \text{ exp } [(3.29 \text{ x } 10^4) / \text{T}]}{1 + 4.5 \text{ x } 10^{-4} (n_e / \text{T}^{1/2})}$

Ex) Energy-Level Diagram for [O III], [N II]

(Osterbrock & Ferland, p. 59)

Ratios as Function of Temperature (Low Density)

(Osterbrock & Ferland, p. 110)

Temperatures for H II Regions

(Osterbrock & Ferland, p. 112)

- Typical H II region temperatures are ~10,000 K
- Some disagreement from different diagnostics, which provide a good starting point, but real temperatures come from models.

Temperatures for Planetary Nebulae

(Osterbrock & Ferland, p. 113)

- Higher temperatures than H II regions, on average
 - Hotter stars and higher densities (collision de-excitation decreases cooling efficiency)
- [O III] may be sampling higher ionization regions than [N II]

Temperature from Recombination Continuum, Lines

- Recombination lines are nearly independent of temperature, since they are dominated by cascades
- Continuum flux is a function of temperature, since capture cross section decreases with increasing free electron velocity
 - 1) Measure continuum flux on either side of the Balmer jump (3646 Å) or
 - 2) Measure HB emission-line flux and continuum flux nearby.

(Osterbrock & Ferland, p. 116)

Densities from Emission Lines

- Ex) [O II] λλ3726, 3729 are excited from ground level to two slightly different upper levels.
- The upper levels have different critical densities:
 ²D_{3/2} 1.6 x 10⁴ cm⁻³ (λ3726) ²D_{5/2} 3.1 x 10³ cm⁻³ (λ3729)
 as density increases, j₃₇₂₉/j₃₇₂₆ will decrease
- At zero density, $j_{3729}/j_{3726} = 1.5$ (ratio of statistical weights)
- At very high density, a Boltzman distribution is established:

$$\frac{\dot{j}_{3729}}{\dot{j}_{3726}} = \frac{3}{2} \frac{A_{3729}}{A_{3726}} = \frac{3}{2} \frac{3.6 \times 10^{-5}}{1.8 \times 10^{-4}} \approx 0.34$$

- [S II] - j_{6716}/j_{6731} works the same way

Ex) Energy-Level Diagram for [O II], [S II]

(Osterbrock & Ferland, p. 122)

- Ground configuration 2p³ for [O II] and 3p³ for [S II]

[O II], [S II] Ratio as Function of Density

(Osterbrock & Ferland, p. 123)

Densities for Planetary Nebulae

(Osterbrock & Ferland, p. 125)

Zanstra Method - Temperature of Ionizing Star

- Use the flux of nebular H β (F_{H β}) to count ionizing photons
- Measure the flux of the star (F_{ν}) in the optical continuum near H β
- Use the ratio $F_{\nu}/F_{H\beta}$ to obtain the temperature of the star

ionizations / sec = # recombinations / sec $Q(H^{0}) = \int_{v_{0}}^{\infty} \frac{L_{v}}{hv} dv = \int_{0}^{r} n_{p} n_{e} \alpha_{B}(H^{0}, T) dV$

The total number of $H\beta$ photons is :

$$Q(H\beta) = \frac{L(H\beta)}{h\nu_{H\beta}} = \frac{\int_{0}^{r} j_{H\beta} dV}{h\nu_{H\beta}} = \int_{0}^{r} n_{p} n_{e} \alpha_{H\beta}^{eff}(H^{0}, T) dV$$
$$\frac{Q(H\beta)}{Q(H^{0})} \approx \frac{\alpha_{H\beta}^{eff}(H^{0}, T)}{\alpha_{B}(H^{0}, T)} \quad \text{so } Q(H\beta) \propto Q(H^{0})$$

To compare the luminosity of a star at any frequency v with $Q(H^0)$:

 $\frac{L_{\nu}}{Q(H^{0})} = \frac{L_{\nu}}{L_{H\beta} / h\nu_{H\beta}} \frac{Q(H\beta)}{Q(H^{0})} = h\nu_{H\beta} \frac{\alpha_{H\beta}^{eff}(H^{0},T)}{\alpha_{B}(H^{0},T)} \frac{F_{\nu}}{F_{H\beta}}$ So this ratio depends primarily on the observed fluxes (you are counting H β and nearby stellar continuum photons)

If we assume a blackbody distribution for L_v

 $\frac{L_{\nu}}{Q(H^0)}$ can be tabulated for different temperatures \rightarrow gives the temperature of the star (Zanstra method) - more realistic determinations use stellar atmospheres

Abundances

- Once the temperature and density are known, a photoionization model can be calculated to get the emissivity of each line
- In practice, this is an iterative process:
 - 1) calculate model
 - 2) adjust input parameters (ionizing spectrum and luminosity, density, geometry, etc.)
 - 3) compare observed and model line ratios (usually relative to Hβ)4) go back to step 1)
- For discrepant lines, you can adjust the abundances to get the proper ratios of C, N, O (etc.) lines
- Beware: in practice, must account for reddening, density inhomogeneities, etc.

Measured Abundances

Table 5.3

Abundances of the elements

Ν	Atom	Sun	H II Region	Planetary	
1	Н	1	1	1	
2	He	0.1	0.095	0.10	
6	С	3.5×10^{-4}	3×10^{-4}	8×10^{-4}	
7	Ν	9.3×10^{-5}	7×10^{-5}	2×10^{-4}	
8	0	7.4×10^{-4}	4×10^{-4}	4×10^{-4}	
10	Ne	1.2×10^{-4}	6×10^{-5}	1×10^{-4}	
11	Na	2.1×10^{-6}	3×10^{-7}	2×10^{-6}	
12	Mg	3.8×10^{-5}	3×10^{-6}	2×10^{-6}	
13	Al	2.9×10^{-6}	2×10^{-7}	3×10^{-7}	
14	Si	3.6×10^{-5}	4×10^{-6}	1×10^{-5}	
16	S	1.6×10^{-5}	1×10^{-5}	1×10^{-5}	
17	C1	1.9×10^{-7}	1×10^{-7}	2×10^{-7}	
18	Ar	4.0×10^{-6}	3×10^{-6}	3×10^{-6}	
19	K	1.3×10^{-7}	1×10^{-8}	1×10^{-7}	
20	Ca	2.3×10^{-6}	2×10^{-8}	1×10^{-8}	
26	Fe	3.2×10^{-5}	3×10^{-6}	5×10^{-7}	

(Osterbrock & Ferland, p. 147)