
1

Emission-Line Diagnostics

• Temperatures from collisionally excited lines
• Temperatures from recombination
• Densities from emission lines
• Ionizing spectrum from “photon counting”
    - The Zanstra method: temperature of ionizing star
• Abundances
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Emission-Line Diagnostics- Summary
• Temperature Measurements
     - collisional excitation of two upper levels with very different 

excitation energies
     - comparison of recombination continuum and emission lines
• Density Measurements
    - excitation of two upper levels with similar energies, but 

different transition probabilities (different critical densities)
• Ionizing Radiation
    - use optically thick nebulae to count ionizing photons
    - presence of high-ionization lines to indicate “hardness’’ of 

ionizing radiation
• Abundances
    - when temperature and density are fixed, the remaining variable 

is abundances of the elements
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Temperatures from Emission Lines
• Ex) [O III] λλ4959, 5007 arise from low 1D2 level,
           [O III] λ4363 from higher 1S0 level:
• the ratio of  j(5007)/j(4959) is fixed at 3.0 = ratio of radiative 

transition probabilities (since both from same upper level)
• as the temperature increases, the average electron velocity 

increases, which increases population of the 1S0 level
• Thus, j(4363) increases relative to j(5007) + j(4959) as the 

temperature increases
• For low densities, the ratio depends only on temperature
• For densities of ne > 105 cm-3, 1D2 begins to get collisionally 

de-excited
• Plugging in the atomic parameters (Osterbrock, chapter 5):

 

j4959 +  j5007

j4363

=
7.90 exp  [(3.29 x 104 ) / T]
1 +  4.5 x 10-4 ne / T1 2( )
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Ex) Energy-Level Diagram for [O III], [N II]

(Osterbrock & Ferland, p. 59)
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Ratios as Function of Temperature (Low Density)

(Osterbrock & Ferland, p. 110)
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Temperatures for H II Regions

• Typical H II region temperatures are ~10,000 K
• Some disagreement from different diagnostics, which provide a good 

starting point, but real temperatures come from models.

(Osterbrock & Ferland, p. 112)
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Temperatures for Planetary Nebulae

(Osterbrock & Ferland, p. 113)

• Higher temperatures than H II regions, on average
– Hotter stars and higher densities (collision de-excitation decreases 

cooling efficiency)
• [O III] may be sampling higher ionization regions than [N II]
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Temperature from Recombination Continuum, Lines
• Recombination lines are nearly independent of temperature, 

since they are dominated by cascades
• Continuum flux is a function of temperature, since capture 

cross section decreases with increasing free electron velocity
1) Measure continuum flux on either side of the Balmer jump (3646 Å) or
2) Measure HB emission-line flux and continuum flux nearby.

(Osterbrock & Ferland, p. 116)



9

Densities from Emission Lines
• Ex) [O II] λλ3726, 3729 are excited from ground level to two 

slightly different upper levels.
• The upper levels have different critical densities:
     2D3/2 – 1.6 x 104 cm-3 (λ3726)      2D5/2 – 3.1 x 103 cm-3 (λ3729)
      - as density increases,  j3729/j3726 will decrease
• At zero density, j3729/j3726 =1.5 (ratio of statistical weights)
• At very high density, a Boltzman distribution is established:

 

j3729

j3726

 =  
3
2

 
A3729

A3726

 =  
3
2

 
3.6x10-5

1.8x10-4
 ≈  0.34

- [S II] -  j6716/j6731 works the same way
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Ex) Energy-Level Diagram for [O II], [S II]

- Ground configuration 2p3 for [O II] and 3p3 for [S II]

(Osterbrock & Ferland, p. 122)
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[O II], [S II] Ratio as Function of Density

(Osterbrock & Ferland, p. 123)



12

Densities for Planetary Nebulae

(Osterbrock & Ferland, p. 125)
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Zanstra Method - Temperature of Ionizing Star
- Use the flux of nebular Hβ (FHβ) to count ionizing photons
- Measure the flux of the star (Fν) in the optical continuum near Hβ
- Use the ratio Fν/ FHβ to obtain the temperature of the star

 

#  ionizations / sec  =  #  recombinations / sec

Q(H0 ) =
Lν

hνν0

∞

∫  dν =  npneαB(H0,T) dV
0

r

∫
The total number of  Hβ photons is :

Q(Hβ) =  
L(Hβ)
hνHβ

 =  
jHβ  dV

0

r

∫
hνHβ

 =  npneαHβ
eff

0

r

∫ (H0,T) dV

Q(Hβ)
Q(H0 )

≈  
αHβ

eff (H0,T)

αB(H0,T)
     so  Q(Hβ) ∝Q(H0 )
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To compare the luminosity of a star at any frequency ν
with Q(H0 ) :

Lν

Q(H0 )
 =  

Lν

LHβ / hνHβ

Q(Hβ)
Q(H0 )

 =   hνHβ

αHβ
eff (H0,T)

αB(H0,T)
Fν

FHβ

So this ratio depends primarily on the observed fluxes
(you are counting Hβ and nearby stellar continuum photons)

If  we assume a blackbody distribution for Lν

Lν

Q(H0 )
 can be tabulated for different temperatures

→ gives the temperature of  the star (Zanstra method)
- more realistic determinations use stellar atmospheres
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Abundances
• Once the temperature and density are known, a photoionization 

model can be calculated to get the emissivity of each line
• In practice, this is an iterative process:
     1) calculate model
     2) adjust input parameters (ionizing spectrum and luminosity,
         density, geometry, etc.)
     3) compare observed and model line ratios (usually relative to Hβ)
     4) go back to step 1)

• For discrepant lines, you can adjust the abundances to get the 
proper ratios of C, N, O (etc.) lines

• Beware: in practice, must account for reddening, density 
inhomogeneities, etc.
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Measured Abundances

(Osterbrock & Ferland, p. 147)


