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Galaxy Spectra - Ellipticals
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Most features from giant G and K stars (e.g., G band 1s from CH)

In the optical, most absorption is stellar. Ca Il H, K and Na I D can
come from ISM as well (but not much 1n Ellipticals)

Lines are broadened from stellar motions

Ca II triplet lines at ~8500 A are good for kinematics (well separated,
uncontaminated)



Disk Galaxies
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SO similar to E' s = old stellar populations

Sa/Sb have stronger Balmer lines (A, F stars) and bluer continua

Sc have emission lines from H II regions (young hot stars)

Starburst galaxies have very strong emission lines and blue continua



Basics of Spectroscopy
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1. Continuum Flux: F = e (F,) (ergss'cm2A-1)
2. Emission Line Flux: F = J(Fx -F)dr (ergss!cm 2)

3a. Absorption Equivalent Width: W, = J(l_ B / F)dAr (A)



F, (ergss'cm 2 A1)
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3b. Absorption-Line Centroid: A (A)

3c. Radial Velocity Centroid: v, =— C (km s)
(nonrelativistic) Mab




» For Galactic kinematics, v, and ¢ are used

* A Gaussian profile is often assumed for the LOSVD (line
of sight velocity distribution):

o
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where v_ = centroid = peak, 6 = velocity dispersion
* Note the full-width at half-maximum for a Gaussian 1s:
FWHM =2.3550¢




Spatially-Resolved Spectra

W

Long-slit spectroscopy: spectra at each position along slit

Resolving power needed: R = A/AA = 5000
(where A 1s the FWHM of the line-spread function (LSF)

Measure v, and ¢ at each position.
Subtract systemic velocity (due to Hubble flow, etc.) from v,
Net v, at each position 1s a measure of rotation:v, = v sin (incl)

o gives component of random motion in the line of sight



Ellipticals: Kinematics

Ex) cD galaxy NGC 1399

radius R (kiloparsecs)
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(Sparke and Gallagher, p. 257)

e For most E’ s: v, (max) << o (central velocity dispersion)



Determination of v, and o

One method: use cross-correlation function (CCF)

Cross-correlate the galaxy spectrum with that of a star (like
a K giant) or a synthetic galaxy
— At each A, you have F,(star) and F,(galaxy)

7

— Do a linear fit of F,(galaxy) vs. F,(star) to get 'r
(linear-correlation coefficient) (Bevington, p. 121)

— Shift one spectrum in A, and calculate r again
(r = 1-> perfect correlation; r = 0 = no correlation)
— The CCF is just r as a function of shift

The CCF peak give the velocity centroid v,; the CCF width
g1ves G

The auto-correlation function (ACF) 1s a function cross-
correlated with itself.
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Results for Ellipticals: Kinematic Correlations

« Faber-Jackson relation: L ~ 6* (o: central velocity disp.)
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« Note L ~I.R.? = Is there a tighter relationship for o, I, R.”?
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Rotation of Elliptical Galaxies
 Is the oblateness of ellipticals due to rotation?
- no, E’ s tend to rotate more slowly than they should
« How fast should they rotate?

e Virial Theorem — if the galaxy 1s dynamically relaxed,
velocity dispersions are equal 1n all directions and:

2<KEi> + <PEi> =0 fori1=x,y, z (axes of symmetry)
where <PEi> 1s the average gravitational potential.

For an oblate galaxy rotating around the z axis:
2
PE,) (KE,) o

E) (KE,) )7 rop
E,)

o > ~(B/ A)O - =(1- e)O < (Sparke & Gallagher, 260)

where A, B, and e are the actual axes and ellipticity
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If the virial theorem applies,6=06_=06_=0,

y
Note that the maximum radial velocity at ¢ (= G,)) 1s:

v(max) = %V (Sparke & Gallagher, p. 260)
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—> observed v(max) much lower than expected from relaxed systems
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* So most ellipticals are not supported by rotation, but by
anisotropic velocity dispersions: 6, # 6 + G,

: Viax/O
Observations: Let (V/G)+= (Vimax /G0 Jobs
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(Sparke & Gallagher, p. 261)
Luminous and boxy ellipticals rotate much slower than expected.

Disky E’ s may be composite: rotating disk embedded in normal elliptical
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Kinematics of Rotating Disks (Spirals)
» Spiral galaxies are dominated by rotation (v, >100)

e (Can determine true velocity v(R), since we know inclination

Edgcon v(R) cos(D) Inclined

i / >
/’ v(R) cos(®) sin(i)

e Observed radial velocity: v, = v, + V(R) cos(dD) sin(1)

Sys
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Spider Diagrams for i = 60°

(isovelocity contours in equal steps)

Axisymmetric Disk: ,
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More realistic example

Binney & Merrifield, 506

18



Radial Velocities from H I 21-cm Emission

« H I gas 1s better tracer of kinematics than stars:
— More uniformly distributed and more extensive

10 3 Ly P, e

A% NGC 7331

(Sparke & Gallagher,
B 2119

Surface Density
om (Mo pc 2)

0 2 4 6 8 10
Radius (arcmin)

* H I typically detected out to 2R,5 to 4R,5 (R,5 of MW =10 kpc)
 Mass (HI) = 1 to 10% Mass (stellar disk)
(Sa =>Sd)
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NGC 7331 - HI Intensity and Spider Diagram
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(Sparke & Gallagher, p. 210)

Complications: Isophotes twisted 1n same direction: warped disk
Gradient along minor axis — radial motion
Kinks in isophotes — random motions
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Rotation Curve (along major axis) for NGC 7331
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* Dotted line: CO observations (traces colder molecular gas)
» Points and solid line: H I 21-cm measurements
« Bulge, disk, and gas: deduced from surface-brightness profiles

» Inferred dark halo mass: 2 to 4 times visible mass (in general)
21
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(Sparke & Gallagher, p. 218)

« Larger disk galaxies rotate faster

« Early types tend to rise more steeply

« Flat rotation curves: evidence for dark halos in disk galaxies
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Tully-Fisher Relation

« Rotation curves not possible for more distant spirals

« Use “integrated” H I profile: double-horned common
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Ex) Ursa Major Group
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Hand-waving Justification for Tully-Fisher:
%

M(Rd) S RdeaX

If M/L ratio 1s constant:

L 1% RdV2

max
12
V4

max

Also: Lec IyRS o< I

If I, 1s constant: L o< V2

max

This probably shouldn’ t work:
» I, and M/L are not constant with type or luminosity
» Velocities are affected by dark halo, luminosity is not

25



Spirals

Even for constant v(R), the angular velocity (v/R) drops
with increasing distance
— differential rotation should wind spirals up
Theories:

1) Starburst 1s stretched out by differential rotation:

—> works for fragmentary (flocculent) arms
2) Density wave

—> continuous (including grand design) arms

- pattern speed tends to be much slower than rotation
—> pattern is maintained by self gravity

26



(Sparke & Gallagher, p. 219)

» Two-armed spiral: nested ovals with rotating position angles
* Originates from external (another galaxy) or internal (bar) perturbations

27



Bars

Not a density wave - “stars remain in bars’

As with spirals, pattern speed is slower than rotation
(up to the co-rotation radius, where bar ends)

Gas builds up and 1s shocked on leading edge - infall

... F—clliptical bar

gas density

x [kpc]
(Sparke & Gallagher, p. 235)
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2)

Supermassive Black Holes (SMBHs)

SMBHs have been detected in the gravitational centers of most
nearby galaxies.

Direct methods to detect and measure masses of quiescent
SMBHs are based on resolved spectroscopy:

Stellar kinematics:

Should show rapid rise 1n v, and/or ¢ near center.
Need high angular resolution (HST or Ground-based AO)
Use dynamical models (dominated by ellipticals and bulges).

What range of stellar orbits and mass density distributions
p(r) give the observed v,, 6, and u (2D) distributions?

Add a point-source mass (if necessary) to match the core.

Measurement of positions, proper motions and radial velocities
of individual stars

- only the Milky Way = Mg =4.3 x 10° Mg

29
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1) Stellar Kinematics from HST

Ex) M32 (compact dE)
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Why do we need high angular resolution?

 What is the radius of influence for the SMBH 1in M329
-~ GM,
o2

For M32,r = 1 pc — 0.3" at a distance of 725 kpc.

r , where Ox = typical stellar velocity dispersion

e SMBH “machine”: HST s Space Telescope Imaging
Spectrograph (STIS) — long slit, high resolution spectra

— angular resolution ~ 0.1", velocity resolution ~ 30 km/s
— measured SMBH masses in many nearby galaxies
* Note these observations do not prove existence of SMBHs
Ex) M32 mass concentrated within ~0.3 pc:
2> p= 10" gem> ! (pretty good vacuum)

—> previously: must rely on arguments that stars inside
this volume would collide and eventually form a SMBH
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What would prove the existence of a SMBH?

Gravitationally redshifted emission from gas within a few

times the Schwarzschild radius (Ry)

? » 2GM, 2GM,

CSe e ? Rs = D
R C

For M32: R, =9 x 10''em =~13R,

\%

— projected angular size: 0 = 10~ arcsec

No hope of resolving directly (can’ t get rotation curve)

X-ray observations of AGN have detected gravitationally-
redshifted Fe Ko emission (presumably from accretion disk)

Now we have proof from Event Horizon Telescope
observations of M87 and Sgr A*.
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2) Individual Stars - Milky Way

- K band observations with NTT, VLT (mostly O and B supergiants)
- Proper motions plus radial velocities give Mg = 4.3 x 10® Mg
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« Kormendy et al

BH Mass/Bulge Correlations

. found a correlation between SMBH mass

(Mg) and absolute blue magnitude of the bulge/elliptical
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(Kormendy, et al. 1998, AJ, 115, 1823)

- recent studies confirm: L. ~ Mg
- given a constant M/L ratio: Mg = 0.002 My,
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Tighter correlations have been found with o (bulge):
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(Gebhardt et al. 2000, AplJ, 539, L13)

- from stellar, gas kinematics, and masers
-0, velocity dispersion of bulge within half-light radius
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c. — velocity dispersion within 1/8
the effective radius of bulge
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3) Subsequent Calibration: M g ~ ¢*

T I
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(Tremaine, et al. 2002, ApJ, 574, 740)

- based on stellar (circles), gas kinematics (triangles), masers (asterisks)
- previous disagreements probably due to different ways to measure c(bulge)
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®
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Implications

 SMBHs present in all galaxies with a spheroidal component

* For distant galaxies, Mg can be inferred from 6, or Ly

« SMBHs in AGN have the same mass as quiescent SMBHs
for a given spheroidal (bulge) mass (Mg~ 0.002 M)

— AGN were much more common 1n the past. Many
quiescent SMBHs are dead remnants of AGN/QSOs.

 How do SMBHs know about their bulges? — linked by
evolution?

« SMBHs formed by

1) Overdensities in the early Universe?

2) Massive Pop III stars?

3) BHs from evolution of nuclear star cluster?

—> Perhaps linked by AGN feedback: radiation and mass

outflows determine size of SMBH and bulge
39



