ASTRONOMY 8300 – FALL 2024 Homework Set 2, Due 10/7/24 at 9:30 AM

- 1.a. (5 pts) Suppose that the interstellar medium contains dust grains with uniform number density of 10^{-12} cm⁻³, all with the same radius of 10^{-5} cm, and extinction efficiency $Q_E = 0.5$ at the wavelength of the V band (5500 Å). If a star is at a distance of 1 kpc, what is the optical depth of the dust between the star and the Earth at 5500 Å?
- b. (5 pts) What is the extinction in magnitudes at 5500 Å as seen from the Earth? If the dust were removed, how much brighter would the star's flux at 5500 Å be as measured from the Earth?
- c. (5 pts) Assuming the standard Galactic extinction curve, what is the extinction at 1200 Å? If the dust were removed, how much brighter would the star be at 1200 Å?
- 2.a. (20 pts) Derive an expression for the temperature of dust (T_D) at a distance d from a star with radius R* and temperature T*, assuming constant absorption and emission efficiencies Q_A and Q_{Emis} .
- b. (15 pts) Given an isolated O star with a temperature of 50,000 K and radius of $12.0~R_{\odot}$, and assuming that Q_A =1 and Q_{Emis} =1, what is the distance from the star at which the dust sublimates (at a temperature of 1500 K). What is the distance at which the dust temperature reaches 20 K?
- 3. Suppose that you have two stars at the same distance with identical intrinsic continuum fluxes as a function of wavelength, but one star is reddened and the other is not. The following table gives the wavelength (λ in Å), intrinsic flux from the undreddened star (F_0 in 10^{-14} ergs s⁻¹ cm⁻² Å ⁻¹), and the flux from the reddened star (F_λ in 10^{-14} ergs s⁻¹ cm⁻² Å ⁻¹).

λ	1100	1650	2200	2750	3300	3850	4400	4950	5500	6050	6600
F_0	3.779	2.443	1.788	1.361	1.049	0.831	0.689	0.590	0.524	0.486	0.463
F_{λ}	0.743	0.622	0.555	0.507	0.468	0.434	0.401	0.371	0.348	0.336	0.320

- a. (10 pts) What is E (B-V) for the reddened star?
- b. (10 pts) What is the approximate H I column to the reddened star?
- c. (10 pts) What is R_V ?
- d. (10 pts) Plot R_{λ} (the reddening curve) as a function of wavelength.
- e. (10 pts) How does the reddening curve compare to those for the Galaxy, LMC, and SMC?