AN INTRODUCTION TO "CLOUDY"

Mitchell Revalski October 29, 2018

WHAT IS CLOUDY?

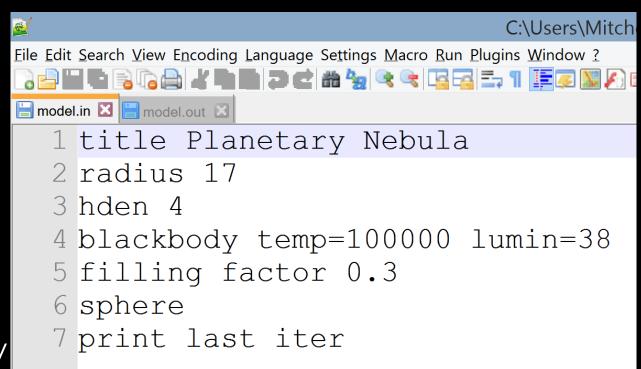
- Cloudy is a spectral synthesis code created by Gary Ferland that has been developed and improved over the last 40 years. The code website URL is: <u>https://nublado.org/</u>
- The most recent version is called C17.01, and it is discussed in this paper: https://arxiv.org/abs/1705.10877
- Cloudy models the interaction of radiation with the interstellar medium to predict the physical conditions in the gas and its emitted spectrum

WHAT CLOUDY NEEDS TO RUN

To create a physically consistent model, Cloudy must be able to determine the number and energy distribution of photons striking the face of a cloud with known composition and geometry.

THE CLOUDY DOCUMENTATION

- The full operation of Cloudy is described in the code's documentation:
- Quick Start Guide basic info on running Cloudy and understanding output
- Hazy 1 a complete list and description of all input commands
- Hazy 2 a complete description of the output generated by Cloudy
- Hazy 3 simulation physics, out of date, refer to ISM textbook "AGN2".


RUNNING CLOUDY

- Cloudy is controlled by a series of input commands, entered in the *input block*.
- If the code has sufficient information to run, then Cloudy generates the *output block*.
- To the right is an example of a planetary nebula input file (model.in):

- title Planetary Nebula
 - (gives a title on output)
- radius 17
 - (log of inner radius in cm)
- hden 4
 - (log of hydrogen density)
- blackbody temp=100000 lumin=38
 - (temperature, log of luminosity in ergs/sec)
- filling factor 0.3
 - (fraction of geometry that is filled)
- Sphere
 - (radiation field allowed to interact with other side)
- print last iter
 - (print results from last zone, 1st zone is always printed)

RUNNING CLOUDY

- Cloudy is controlled by a series of input commands, entered in the *input block*.
- If the code has sufficient information to run, then Cloudy generates the output block.
- To the right is an example of a planetary nebula input file (model.in):

EXAMINING THE OUTPUT

Х

Eile Edit Search View Encoding Language Settings Macro Run Plugins Window ?) 🖻 🖬 🖷 🗟 🕼 🖧 🖬 🖿 🗩 🖆 📽 🐄 🔍 🔍 📭 🖅 1 🔚 🐷 🔊 💌 🗩 🖿 🗩 🕬 model.in 🛛 🔚 model.out 🔀 Cloudy 17.01 1 2 www.nublado.org 3 4 ***********17Jun01************* 5 * 6 * title Planetary Nebula 7 * radius 17 8 * hden 4 9 * blackbody temp=100000 lumin=38 10 * filling factor 0.3 11 * sphere 12 * print last iter 13 14 15 16 17 18 NOTE Setcon: continuum has zero intensity starting at 7.9913e+01 Ryd. 1027 cells in the incident continuum have zero intensity. Problems??? 19 20 21 8228CellPeak1.79E+00 Lo 3.04e-09= 29.98m Hi-Con:7.13E+06 Ryd E(hi):7.35E+06Ryd E(hi): 100.00 MeV 22 L(nu>1ryd): 37.9510 Average nu:2.176E+00 L(X-ray): 27.6722 L(BalC): 37.0172 Q(Balmer C): 47.8589 23 Q(1.0-1.8): 47.9252 Q(1.8-4.0): 47.9690 Q(4.0-20): 47.0417 Q(20--): 37.0070 Ion pht flx:1.498E+13 24 L(gam ray): 0.0000 Q(gam ray): 0.0000 L(Infred): 35.4329 Alf(ox): 0.0000 Total lumin: 38.0000 25 log L/Lsun: 4.4170 Abs bol mg: -6.3000 Abs V maq: 0.0378 Bol cor: -6.3378 nuFnu(Bbet): 35.5356 26 U(1.0----):4.998E-02 U(4.0----):2.922E-03 T(En-Den):4.328E+01 T(Comp):9.580E+04 nuJnu(912A):1.978E+02 27 Occ(FarIR):7.298E-06 Occ(H n=6):7.837E-13 Occ(1Rvd):9.120E-15 Occ(4R):6.292E-17 Occ (Nu-hi):0.000E+00 28 Tbr(FarIR): 3.508E-09 Tbr(H n=6):3.432E-09 Tbr(1Ryd):1.439E-09 Tbr(4R):3.980E-11 Tbr (Nu-hi):0.000E+00 29 30 Gas Phase Chemical Composition H · 0 0000 He· -1 0000 T.i· -8 6904 Re·-10 5800 R · -9 2097 C · -3 6108 N · -4 0701 O · -3 3098 21 F • _7 5200 <

• First, Cloudy will print the code version number, and the input commands:

Cloudy 17.01						
www.nublado.org						
**************************************	******					
*	*					
* title Planetary Nebula						
* radius 17	*					
* hden 4	*					
* blackbody temp=100000 lumin=38						
* filling factor 0.3	*					
* sphere	*					
* print last iter	*					
*	*					
***************************************	******					

• Next, Cloudy prints information on the radiation field and gas composition:

NOTE Setcon: continuum has zero intensity starting at 7.9913e+01 Ryd. 1027 cells in the incident continuum have zero intensity. Problems???

8228CellPeak1.79E+00	Lo 3.04e-09= 29.98m	Hi-Con:7.13E+06 Ryd	E(hi):7.35E+06Ryd	E(hi): 100.00 MeV
L(nu>1ryd): 37.9510	Average nu:2.176E+00	L(X-ray): 27.6722	L(BalC): 37.0172	Q(Balmer C): 47.8589
Q(1.0-1.8): 47.9252	Q(1.8-4.0): 47.9690	Q(4.0-20): 47.0417	Q(20): 37.0070	Ion pht flx:1.498E+13
L(gam ray): 0.0000	Q(gam ray): 0.0000	L(Infred): 35.4329	Alf(ox): 0.0000	Total lumin: 38.0000
log L/Lsun: 4.4170	Abs bol mg: -6.3000	Abs V mag: 0.0378	Bol cor: -6.3378	nuFnu(Bbet): 35.5356
U(1.0):4.998E-02	U(4.0):2.922E-03	T(En-Den):4.328E+01	T(Comp):9.580E+04	nuJnu(912A):1.978E+02
Occ(FarIR):7.298E-06	Occ(H n=6):7.837E-13	Occ(1Ryd):9.120E-15	Occ(4R):6.292E-17	Occ (Nu-hi):0.000E+00
Tbr(FarIR):3.508E-09	Tbr(H n=6):3.432E-09	Tbr(1Ryd):1.439E-09	Tbr(4R):3.980E-11	Tbr (Nu-hi):0.000E+00

 Gas Phase Chemical Composition

 H: 0.0000
 He: -1.0000
 Li: -8.6904
 Be:-10.5800
 B: -9.2097
 C: -3.6108
 N : -4.0701
 O: -3.3098
 F: -7.5200

 Ne: -4.0000
 Na: -5.6696
 Mg: -4.4597
 Al: -5.5302
 Si: -4.4597
 P: -6.4949
 S: -4.7352
 Cl: -6.7190
 Ar: -5.6003

 K: -6.8794
 Ca: -5.6402
 Sc: -8.8297
 Ti: -6.9788
 V: -8.0000
 Cr: -6.3298
 Mn: -6.5406
 Fe: -4.5498
 Co: -7.0799

 Ni: -5.7496
 Cu: -7.7905
 Zn: -7.4001
 Si: -4.4001
 Si: -4.4001
 Si: -4.4001

• This is followed by physical and simulation information, and warnings:

1 Te:1.551E+04 Hden:1.000E+04 Ne:1.201E+04 R:1.001E+17 R-R0:7.520E+13 dR:1.504E+14 NTR: 6 Htot:6.413E-16 T912: 1.00e+0 Hydrogen 1.49e-04 1.00e+00 H+o/Hden 1.00e+00 8.31e-12 H- H2 4.37e-19 3.30e-13 H2+ HeH+ 2.98e-14 Ho+ ColD 6.71e+13 4.51e Helium 2.31e-06 2.06e-02 9.79e-01 HeI 2s3S 5.02e-08 Comp H,C 4.10e-22 6.64e-23 Fill Fac 3.00e-01 Gam1/tot 1.00e+00 He singlet n 2.26e-06 3.85e-13 2.94e-20 4.55e-20 2.04e-20 4.44e-20 He tripl 5.02e-08 2.83e-17 2.10e-19 7.87e-19 1.55e-19 Pressure NgasTgas 3.57e+08 P(total) 4.93e-08 P(gas) 4.93e-08 P(Radtn) 0.00e+00 Rad accl 1.99e-05 ForceMul 2.23e+03 Texc(La) 3.78e+03 T(I con) 4.32e+01 T(D con) 6.17e+00 T(U tot) 4.32e+01 nT (c+d) 1.19e+07 Prad/Gas 0.00e+00 Pmag/Gas 0.00e+00 Molecules CH/Ctot: 7.96e-21 CH+/Ctot 5.19e-18 CO/Ctot: 1.66e-28 CO+/Ctot 6.45e-27 H2O/Otot 3.71e-34 OH/Ototl 3.87e-21 Lithium 7.87e-06 8.75e-02 8.98e-01 1.44e-02 Berylliu 1.10e-05 1.32e-03 9.97e-01 1.25e-03 0.00e+00 sec ion: 4.85e-14

Planetary Nebula

Calculation stopped because lowest Te reached. Iteration 1 of 1

The geometry is a thick shell.

C-Continuum zero at some energies.

!Charge transfer H => H+ reached 1480.3% of the local H ionization rate.

!AGE: Cloud age was not set. Longest timescale was 2.90e+09 s = 9.20e+01 years.

!The CMB was not included. This is added with the CMB command.

!The radiation pressure jumped by 675% at zone 49, from 2.63e-09 to 2.12e-10 to 2.28e-10

Charge transfer heating reached 2.13% of the local heating.

Destruction of He 2TriS reached 3.7% of the total He0 dest rate at zone 1, 1.5% of that was photoionization.

The density is too low to 1-mix the lowest H I collapsed level. More resolved levels are needed for accurate line ratios. The density is too low to 1-mix the lowest He I collapsed level. More resolved levels are needed for accurate line ratios. Non-collisional excitation of [O III] 4363 reached 0.96% of the total.

Grains were not present but might survive in this environment (energy density temperature was 4.33e+01K)

The continuum optical depth at the lowest energy considered (3.045e-09 Ryd) was 1.477e+04.

The ratio of radiation to gas pressure reached 8.26e-02 at zone 49. Caused by Lyman alpha.

- The input is printed again, followed by **intrinsic** and **emergent** line strengths:
- The format is: line label, wavelength (A or m), flux (cgs), and ratio relative to $H\beta$

		Emissic	on Line Spec	ctrum. Con	nstant Densit	zy Model.	Closed geo	ometry. Item	ration 1 of	1.	
			Lur	minosity (er	g/s) emitted	-	-	—			
					-			-			
					Intrinsic li	ne intens	sities				
general	properties.			H 1	3.48198m	33.264	0.0020	Ca 5	4.15739m	33.819	0.0072
Inci	0	38.000	109.9358	H 1	19.0565m	33.455	0.0031	Ca 5	5309.11A	33.645	0.0049
TotH	0	37.627	46.6179	H 1	11.3055m	33.349	0.0025	Cl 2	14.3639m	33.000	0.0011
TotC	0	37.627	46.5803	H 1	8.75760m	33.228	0.0019	Cl 2	8578.70A	33.495	0.0034
BFH1	0	37.538	37.9240	H 1	7.50599m	33.067	0.0013	Cl 3	5537.87A	33.981	0.0105
BFHe	0	36.806	7.0319	H 1	6.77008m	32.967	0.0010	C1 3	5517.71A	33.685	0.0053
TotM	0	36.054	1.2458	H 1	4.84633m	33.065	0.0013	Cl 3	3342.80A	33.305	0.0022
СТ Н	0	35.571	0.4091	H 1	27.7955m	33.125	0.0015	C1 4	20.3197m	33.722	0.0058
H FB	0	36.314	2.2659	H 1	16.2045m	33.039	0.0012	Cl 🌾	11.7629m	34.049	0.0123
HFBC	0	36.314	2.2659	Ca A	303.784A	36.666	5.0995	Cl 4	7530.54A	33.670	0.0051
H 1c	0	36.363	2.5371	Ca A	256.317A	35.952	0.9849	Cl 4	8045.62A	34.033	0.0119
He 1c	0	36.146	1.5383	Ca A	243.027A	35.524	0.3671	Fe 4	3094.96A	33.931	0.0094
Al 3c	0	34.359	0.0251	Ca A	237.331A	35.215	0.1805	Fe 4	2835.74A	35.556	0.3955
Ar 2c	0	33.704	0.0056	Ca A	234.347A	34.973	0.1033	Fe 4	2829.36A	35.293	0.2159

TIPS ON THE CLOUDY OUTPUT

- There are a variety of SAVE commands in Cloudy
- These allow you to control the main output, and save additional files
- See Hazy 1, Chapter 16 (C17.01) for further information on SAVE options
- Be careful with linear vs. logarithmic quantities, and check the output!
- Make sure it says "Cloudy exited OK" at the end of your model!