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The projection factor of δ Cephei
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Abstract. Cepheids play a key role in astronomy as standard candles for measuring intergalactic distances. Their distance is
usually inferred from the period–luminosity relationship, calibrated using the semi-empirical Baade-Wesselink method. Using
this method, the distance is known to a multiplicative factor, called the projection factor. Presently, this factor is computed using
numerical models – it has hitherto never been measured directly. Based on our new interferometric measurements obtained
with the CHARA Array and the already published parallax, we present a geometrical measurement of the projection factor of a
Cepheid, δ Cep. The value we determined, p = 1.27 ± 0.06, confirms the generally adopted value of p = 1.36 within 1.5 sigmas.
Our value is in line with recent theoretical predictions of Nardetto et al. (2004, A&A, 428, 131).
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1. Introduction

Cepheid stars are commonly used as cosmological distance
indicators, thanks to their well-established period–luminosity
law (P−L). This remarkable property has turned these su-
pergiant stars into primary standard candles for extragalac-
tic distance estimations. With intrinsic brightnesses of up to
100 000 times that of the Sun, Cepheids are easily distinguished
in distant galaxies (up to about 30 Mpc distant). As such, they
are used to calibrate the secondary distance indicators (super-
novae, etc...) that are used to estimate even larger cosmologi-
cal distances. For instance, the Hubble Key Project to measure
the Hubble constant H0 (Freedman et al. 2001) is based on the
assumption of a distance to the LMC that was established pri-
marily using Cepheids. Located at the very base of the cosmo-
logical distance ladder, a bias on the calibration of the Cepheid
P−L relation would impact our whole perception of the scale
of the Universe.

1.1. Period–luminosity calibration

The P−L relation takes the form log L = α log P + β, where L
is the (absolute) luminosity, P the period, α the slope, and β

� Table 3 is only available in electronic form at
http://www.edpsciences.org

the zero point. The determination of α is straightforward: one
can consider a large number of Cepheids in the LMC, located
at a common distance from us. Calibrating the zero-point β is
a much more challenging task, as it requires an independent
distance measurement to a number of Cepheids. Ideally, one
should measure directly their geometrical parallaxes, in order
to obtain their absolute luminosity. Knowing their variation pe-
riod, β would then come out easily. However, Cepheids are rare
stars: only a few of them are located in the solar neighborhood,
and these nearby stars are generally too far away for precise
parallax measurements, with the exception of δ Cep.

1.2. The Baade-Wesselink method

The most commonly used alternative to measure the distance
to a pulsating star is the Baade-Wesselink (BW) method.
Developed in the first part of the 20th century (Baade 1926;
Wesselink 1946), it utilizes the pulsational velocity Vpuls. of the
surface of the star and its angular size. Integrating the pulsa-
tional velocity curve provides an estimation of the linear radius
variation over the pulsation. Comparing the linear and angular
amplitudes of the Cepheid pulsation gives directly its distance.
The most recent implementation (Kervella et al. 2004) of the
BW method makes use of long-baseline interferometry to mea-
sure directly the angular size of the star.
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Unfortunately, spectroscopy measures the apparent radial
velocity Vrad., i.e. the Doppler shift of absorption lines in the
stellar atmosphere, projected along the line of sight and inte-
grated over the stellar disk. This is where p, a projection factor,
has to be introduced, which is defined as p = Vpuls./Vrad.. The
general BW method can be summarized in the relation:

θ(T ) − θ(0) = −2
p
d

∫ T

0

(
Vrad.(t) − Vγ

)
dt (1)

where d is the distance, p the projection factor, θ the angu-
lar diameter and Vγ the systematic radial velocity. There are in
fact many contributors to the p-factor. The main ones are the
sphericity of the star (purely geometrical) and its limb darken-
ing (due to the stellar atmosphere structure). A careful theo-
retical calculation of p requires modeling dynamically the for-
mation of the absorption line in the pulsating atmosphere of
the Cepheid (Parsons 1972; Sabbey et al. 1995; Nardetto et al.
2004).

Until now, distance measurements to Cepheids used
a p-factor value estimated from numerical models. Looking
closely at Eq. (1), it is clear that any uncertainty on the value
of p will create the same relative uncertainty on the distance
estimation, and subsequently to the P−L relation calibration.
In other words, the Cepheid distance scale relies implicitly on
numerical models of these stars. But how good are the mod-
els? To answer this question, one should confront their pre-
dictions to measurable quantities. Until now, this comparison
was impossible due to the difficulty to constrain the two vari-
ables θ(T ) and d from observations, i.e. the angular diameter
and the distance.

Among classical Cepheids, δ Cep (HR 8571, HD 213306)
is remarkable: it is not only the prototype of its kind, but also
the Cepheid with the most precise trigonometric parallax cur-
rently available, obtained recently using the FGS instrument
aboard the Hubble Space Telescope (Benedict et al. 2002). This
direct measurement of the distance opens the way to the direct
measurement (with the smallest sensitivity to stellar models)
of the p factor of δ Cep, provided that high-precision angular
diameters can be measured by interferometry.

2. Application of the BW method to δ Cep

To achieve this goal, interferometric observations were un-
dertaken at the CHARA Array (ten Brummelaar et al.
2003; ten Brummelaar et al. 2005), in the infrared K′ band
(1.95 µm ≤ λ ≤ 2.3 µm) with the Fiber Linked Unit
for Optical Recombination (Coudé du Foresto et al. 2003)
(FLUOR) using two East-West baselines of the CHARA Array:
E1-W1 and E2-W1, with baselines of 313 and 251 m respec-
tively. Observations took place during summer 2004 for E2-W1
(seven nights between JD 2 453 216 and JD 2 453 233) and Fall
2004 for E1-W1 (six consecutive nights, from JD 2 453 280
to JD 2 453 285). The pulsation phase was computed using
the following period and reference epoch (Moffett & Barnes
1985): P = 5.366316 d, T0 = 2 453 674.144 (Julian date), the
0-phase being defined at maximum light in the V band. The
resulting phase coverage is very good for the longest baseline

Table 1. Calibrators with spectral type, uniform disk angular diameter
in K band (in milliarcsecond) and baseline (Mérand et al. 2005).

S. type UD diam. (mas) Baseline

HD 2952 K0III 0.938 ± 0.013 W1-E1

HD 138852 K0III-IV 0.952 ± 0.012 W1-E1

HD 139778 K1III: 1.072 ± 0.014 W1-E2

HD 186815 K2III 0.713 ± 0.009 W1-E2

HD 206349 K1II-III 0.869 ± 0.011 W1-E1, W1-E2

HD 206842 K1III 1.214 ± 0.016 W1-E2

HD 214995 K0III: 0.947 ± 0.013 W1-E1

HD 216646 K0III 1.051 ± 0.015 W1-E1, W1-E2

HD 217673 K1.5II 1.411 ± 0.020 W1-E2

(E1-W1), while data lack at minimum diameter for the smaller
one (E2-W1)

The FLUOR Data reduction software (DRS)
(Coudé du Foresto et al. 1997), was used to extract the
squared modulus of the coherence factor between the two in-
dependent apertures. All calibrator stars were chosen in a
catalogue computed for this specific purpose (Mérand et al.
2005) (see Table 1). Calibrators chosen for this work are all
K giants, whereas δ Cep is a G0 supergiant. The spectral type
difference is properly taken into account in the reduction,
even though it has no significant influence on the final result.
The interferometric transfer function of the instrument was
estimated by observing calibrators before and after each δ Cep
data point. The efficiency of CHARA/FLUOR was consistent
between all calibrators and stable over the night around 85%.
Data that share a calibrator are affected by a common system-
atic error due to the uncertainty of the a priori angular diameter
of this calibrator. In order to interpret our data properly, we
used a specific formalism (Perrin 2003) tailored to propagate
these correlations into the model fitting process. Diameters are
derived from the visibility data points using a full model of the
FLUOR instrument including the spectral bandwidth effects
(Kervella et al. 2003). The stellar center-to-limb darkening is
corrected using a model intensity profile taken from tabulated
values (Claret 2000) with parameters corresponding to δ Cep
(Teff = 6000 K, log g = 2.0 and solar metallicity). The limb
darkened (LD) angular diameter comes out 3% larger than its
uniform disk (UD) counterpart.

The theoretical correction for LD has only a weak influ-
ence on the p-factor determination, since that determination is
related to a diameter variation. For example, based on our data
set, a general bias of 5% in the diameters (due to a wrongly esti-
mated limb darkening) leads to a bias smaller than 1% in terms
of the p-factor. Differential variations of the LD correction
during the pulsation may also influence the projection fac-
tor: comparison between hydrodynamic and hydrostatic simu-
lations (Marengo et al. 2003) showed negligible variations. An
accuracy of 0.2% on the angular diameters for a given baseline
is required to be sensitive to dynamical LD effects. This is close
to, but still beyond, the best accuracy that we obtained on the
angular diameter with a single visibility measurement: 0.35%
(median 0.45%).
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Fig. 1. Radial velocity smoothed using splines. A. Radial velocity data
points, as a function of pulsation phase (0-phase defined as the max-
imum of light). This set was extracted using a cross-correlation tech-
nique (Bersier et al. 1994). The solid line is a 4-knot periodic cubic
spline fit. B. Residuals of the fit.

Among the various sets of measurements of the radial ve-
locity Vrad.(t) available for δ Cep, we chose measurements from
Bersier et al. (1994) and Barnes et al. (2005). These works offer
the best phase coverage, especially near the extrema, in order
to accurately estimate the associated photospheric amplitude.
In order not to introduce any bias due to a possible mismatch
in the radial velocity zero-point between the two data sets, we
decided to reduce them separately and then combine the result-
ing p-factor. An integration over time is required to obtain the
photospheric displacement (see Eq. (1)). This process is noisy
for unequally spaced data points: the radial velocity profile was
smoothly interpolated using a periodic cubic spline function.

Fitting the inferred photospheric displacement and ob-
served angular diameter variations, we adjust three parame-
ters: the mean angular diameter θ, a free phase shift φ0 and
the projection factor p (see Fig. 1). The mean angular diame-
ter is found to be 1.475 ± 0.004 mas (milliarcsecond) for both
radial velocity data sets. Assuming a distance of 274 ± 11 pc
(Benedict et al. 2002), this leads to a linear radius of 43.3 ±
1.7 solar radii. The fitted phase shift is very small in both cases
(of the order of 0.01). We used the same parameters (Moffett &
Barnes 1985) to compute the phase from both observation sets
and considering that they were obtained more than ten years
apart, this phase shift corresponds to an uncertainty in the pe-
riod of approximately five seconds. We thus consider the phase
shift to be reasonably the result of uncertainty in the ephemeris.

The two different radial velocity data sets lead to a consoli-
dated value of p = 1.27 ± 0.06, once again assuming a distance
of 274 ± 11 pc. The final reduced χ2 is 1.5. The error bars ac-
count for three independent contributions: uncertainties in the
radial velocities, the angular diameters and the distance. The
first was estimated using a bootstrap approach, while the oth-
ers were estimated analytically (taking into account calibration
correlation for interferometric errors): for p, the detailed error
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Fig. 2. p-factor determination. A. Our angular diameter measurements
(points). Crosses correspond to the medium baseline (E2-W1), while
circles correspond to the largest baseline (E1-W1). The continuous
line is the integration of the 4-knots periodic cubic spline fitted to
the radial velocities (Fig. 1). Integration parameters: θ = 1.475 mas,
p = 1.269 and d = 274 pc. B. Residuals of the fit.

Table 2. Best fit results for p, with the two different radial velocity
sets. The third line is a weighted average of the two individual mea-
surements. Fourth and fith lines are the detailed quadratic contribu-
tion to the final error bar. Last line gives the final adopted value with
the overall error bar. References are: (1) Bersier et al. (1994); and
(2) Barnes et al. (2005).

p ± σVrad. 1.269 ± 0.008 ref. (1)

1.280 ± 0.012 ref. (2)

p ± σVrad. 1.273 ± 0.007 consolidated

σinterf. ±0.020

σdist. ±0.050

p 1.27 ± 0.06

is p = 1.273 ± 0.007Vrad. ± 0.020interf. ± 0.050dist.. The error is
dominated by the distance contribution (see Table 2).

3. Discussion

Until now, the p-factor has been determined using models: hy-
drostatic models (Burki et al. 1982) produced the generally
adopted value, p = 1.36. First attempts were made by Sabbey
et al. (1995) to take into account dynamical effects due to the
pulsation. They concluded that the average value of p should
be 5% larger than in previous works (1.43 instead of 1.36)
and that p is not constant during the pulsation. Because they
increased p by 5%, they claimed that distances and diame-
ters have to be larger in the same proportion. More recently
Nardetto et al. (2004) computed p specifically for δ Cep using
dynamical models. Different values of p were found, whether
one measures diameters in the continuum or in the layer where
the specific line is formed. In our case, broad band stellar inter-
ferometry (angular diameters are measured in the continuum)
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these authors suggest p = 1.27 ± 0.01. Concerning the vari-
ation of p during the pulsation, they estimate that the error in
terms of distance is of the order of 0.2%, smaller than what we
would have been able to measure with our interferometric data
set. While our estimate, p = 1.27 ± 0.06, is statistically com-
patible with this recent work, marginally with the widely used
p = 1.36, and not consistent with the former value p = 1.43
at a 2σ level. We note that Gieren et al. (2005) have recently
derived an expression of the p-factor as a function of the period
that predicts a value of 1.47 ± 0.06 for δCep. While this value
is in agreement with the modeling by Sabbey et al. (1995), is
is slightly larger than the present measurement (by 2.4σ). As a
remark, Gieren et al. obtain a distance of 280 ± 4 pc for δ Cep,
that is slightly larger than Benedict et al.’s (2002) value 274 ±
11 pc assumed in the present work. Assuming this new distance
estimation with our data would result in a p-factor of 1.30 ±
0.06, bringing the agreement to 2σ only.

Our geometrical determination of the p-factor, p = 1.27 ±
0.06, using the IBW method is currently limited by the error
bar on the parallax (Benedict et al. 2002). Conversely, assum-
ing a perfectly known p-factor, the uncertainty of the stellar
distance determined using the same method would have been
only 1.5%, two-times better than the best geometrical parallax
currently available. The value we determined for p is statisti-
cally compatible with the value generally adopted to calibrate
the Cepheid P−L relation in most recent works. It is expected
that the distance to approximatively 30 Cepheids will be deter-
mined interferometrically in the near future using particularly
the CHARA Array and the VLT Interferometer (Glindemann
2005). In order not to limit the final accuracy on the derived
distances, theoretical p-factor studies using realistic hydrody-
namical codes is necessary. With a better understanding of the
detailed dynamics of the Cepheid atmospheres, we will be in
a position to exclude a p-factor bias on the calibration of the
P−L relation, at a few percent level.
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