Relativistic Cosmology

Cosmological Principle - homogeneity & isotropy on large enough scale.

⇒ Friedmann's Equation

Standard Model is the Hot Big Bang.

4 problems but a huge number of successes:

1. Hubble expansion ($<10^9$ yr)
2. ~Isotropic microwave background radiation (decoupling) ($<10^6$ yr)
3. Abundances of light elements ($<10^3$)
4. Number of quark & lepton families ($<10^3$)

Won't discuss physical cosmology in this course ... some in 602, 8410.

Olber's Paradox

If space Euclidean & infinite sky's brightness should = π. This is because stars block each other out, otherwise: $I \to \infty$.

Absorbing gas doesn't work a. it would heat up. Still a problem if non-Euclidean, open or closed as long as it is infinitely old.

If stars & universe have finite age brightness drops but full darkness allowed only if universe is expanding & Doppler shift of expansion work lowers T_{sky}.
Cosmological Term

Vacuum field eqn: \[G_{ab} = 0 \] (1)

was clearly correct to Einstein, but didn't fulfill
pure Mach's principle since Minkowski space is a soln
-and an empty space would have inertial properties.

He could generalize his standard field eqns:
\[G_{ab} = 8\pi T_{ab} \] (2)

in order to produce a static universe, that seemed
to be most logical. "Perfect" Cosmological
Principle: no change of \(t \) or space [how, \(\Lambda \) is?]
(2) could not \(\Rightarrow \) "Steady State". Rather, this
requires: \[G_{ab} - \Lambda g_{ab} = 8\pi T_{ab} \] (3)

\(\Lambda \) = cosmological constant

-Machian since flat space no longer a soln
But de Sitter found for a vacuum soln \(w, \Lambda \neq 0 \) so
Einstein concluded \(\Lambda \) was "the biggest mistake I ever made."
Since: \[g_{ab} = 0 \] (3) is consistent with \(T_{ab} = 0 \)
\(\Lambda \) the Lagrangian is: \[\mathcal{L} = -\frac{1}{2} (R - 2\Lambda) + L_{\text{Matter}} \] (4)

Homogeneous? - Superclusters, sheets,
voids, Great Attractor \(\Rightarrow \) is so only on
largest scales \(\sim 100 \) Mpc.

3 other solutions such as Bianchi models-
anisotropic with nine general classes...
Type I have "cigar"-like or "pancake-like"

\[ds^2 = t^2 dx^2 + t^2 dy^2 + t^2 dz^2 - dt^2 \] (5)

\(w/ \quad p_1 + p_2 + p_3 = p_1^2 + p_2^2 + p_3^2 = 1 \)
Weyl's Postulate: Adopt GR as correct local physics & add privileged observers - those associated w/ smeared-out galactic motion. A sub-stratum that pervades space & galaxies are particles in this flow. Mathematically: The particles of the sub-stratum lie in space-time on a congruence of time-like geodesics diverging from a point in the finite of infinite past. Physically: the sub-stratum can be taken as perfect fluid.

Relativistic Cosmology demands:

i) Cosmological Principle
ii) Weyl's Postulate
iii) General Relativity

Have maximally sym. space & comoving coords in a space of constant curvature. We'd already shown that a 3-space of const. curvature has:

\[ds^2 = \frac{dr^2}{1-Kr^2} + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \]

(6)

The line element for relativistic cosmology is:

\[ds^2 = R(t)^2 \left(\frac{dr^2}{1-Kr^2} + r^2 (d\theta^2 + \sin^2 \theta d\phi^2) \right) - dt^2 \]

(7)

One makes the conformally flat version by mapping:

\[r = \frac{T}{(1+\frac{1}{4}Kr^2)} \]

(8)

so that (7) then becomes:

\[ds^2 = R(t)^2 \frac{dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2)}{(1+\frac{1}{4}Kr^2)^2} - dt^2 \]

(9)
The standard form arises by rescaling r and K, hence $R(t)$:

$$r \rightarrow r' = |K|^{1/2} r, \quad K = |K| k, \quad R \rightarrow R' = \frac{R}{|K|^{1/2}} (K+1) t^{1/2}.$$

Then $k = +1, -1, 0$, replaces K in (7) and (9) ($K=0$)

Recall $k=+1 \Rightarrow$ spherical geometry, closed $k=0 \Rightarrow$ flat, $\left\{ w=0 \right\} \Rightarrow$ infinite in extent

$\left\{ k=-1 \right\} \Rightarrow$ open

E.g., $k=+1 \Rightarrow$ (7) is singular as $r \rightarrow 1$, so substitute:

$$\begin{align*}
 r &= \sin X, \\
 dr &= \cos X dX, \\
 (10) &\quad (1-c^2)^{1/2} dX
\end{align*}$$

$$\begin{align*}
 ds^2 &= R_0^2 \left[dX^2 + \sin^2 X (d\theta^2 + \sin^2 \theta d\phi^2) \right] \\
 (11) &\quad R_0 = \text{radius of the universe}
\end{align*}$$

Now embed this 3-surface in 4-D Euclidean space with coordinates $\left(w, X, \theta, \phi \right)$:

$$w = R_0 \cos X, \quad X = R_0 \sin X \sin \theta \cos \phi, \quad \theta = R_0 \sin X \sin \phi, \quad \phi = R_0 \sin X \cos \phi.$$

One can then show (12) \Rightarrow

$$ds^2 = dw^2 + dx^2 + dy^2 + dz^2 \equiv (11) \quad \text{and also}$$

$$\begin{align*}
 w^2 + x^2 + y^2 + z^2 &= R_0^2 \\
 \left\{ R = 3 \right\} &\Rightarrow 3-D \text{ sphere in 4-DEuc.}
\end{align*}$$

$$\begin{align*}
 V &= \sum_{\omega=0}^{2\pi} \sum_{\theta=0}^{\pi} \sum_{\phi=0}^{2\pi} (R_0 \sin X d\theta)(R_0 \sin X d\phi) dX \\
 &= 2\pi R_0^3 (1-c^2)^{1/2} \quad \text{radius of the universe}
\end{align*}$$

This 3-space is the generalization of S^2 or 2-sphere to 3-D: S^3 in 3-space ... But not really embedded in 3-space - it is the totality of physical points outside it & a boundary for it. The space is bounded, closed or compact in topology

Whole S^T is **cylindrical**: $R \times S^3$
Friedmann's Equation

Combining (3), (9), + Weyl's postulate:

\[T_{ab} = (p + p) u_a u_b + p g_{ab} \]
\[\Rightarrow \]
\[3 \frac{R^2 + k}{R^2} - \Lambda = 8\pi p(t) \]
\[2 \frac{R^2 + k}{R^2} - \Lambda = -8\pi p(t) \]
\[(\Lambda = \frac{k}{R^2}) \]

(17) has \(R \leftrightarrow \) EOM of motion
(16) has only \(R \leftrightarrow \) Integral of motion or ENERGY eqn.
Take \(\frac{\partial}{\partial t} \) (16) mult by \(\frac{1}{8\pi} \) and add to (17): \(-\frac{3\dot{R}}{8\pi R} \)

\[\Rightarrow \frac{\dot{R}}{R} + 3p = -\frac{3}{8\pi} R \left(\frac{3R^2}{R^2} + \frac{3k}{R^2} - \Lambda \right) = -3p \frac{R}{R} \]

mult by \(R^3 \), this becomes:
\[\frac{d}{dt}(\rho R^3) + p \frac{d}{dt}(R^3) = 0 \]
\[(18) \]

Consider particles in vol. \(V \): clearly sub-structure expansion \(\Rightarrow V \propto R^3(t) \) & if total mass-energy in vol is: \(E = pV \) then (18) is 1st Law of Thermo

or Cons. of Energy:
\[dE + pdV = 0 \]
\[(19) \]

The same result comes from: \(T_{ab} ; b = 0 \)
& says pressure does work in the expansion.

In the current universe: \(p = p_m + p_\gamma + p_{\Lambda,\text{dark}} \approx 10^{-5} \) mbaryon
so \(p = 0 \) or a dust universe is OK now.

Then (17) integrates to:
\[R(R^2 + k) - \frac{1}{3} \Lambda R^3 = C \]
\[(20) \]
Use (18) to see const. of integration is:
\[C = \frac{\rho_0}{3} R_0^3 \]
\[(21) \]

essentially energy content of vol. \(V \), const. from (19).
As \(p = 0 \), (21) expresses cons. of mass \(-2\pi\)
mass in Euclidean spherical vol. Use(21) in (16), get:
\[
R^2 = \frac{C}{R} + \frac{\Lambda}{3} R^2 - k
\]
(22)

Friedmann's Eqn. In a Newtonian approximation
(which must assume Hubble's law) \(R^2 \propto \) Kinetic Energy,
\(\propto \) Potential Energy, \(\Lambda > 0 \\Rightarrow \) Cosmic repulsion,
\(\Lambda < 0 \Rightarrow \) Cosmic attraction.

Light Propagation Assume Rel Cosmo
works like \(6\pi R \), \(O \) receives light from
a distant galaxy \(P \). Use RW metric (7)
& homing spaces for slices so ungray take
\(r = 0 @ O \). Radial null geodesics says: \(ds^2 = d\theta d\phi = 0 \)
\[
- \quad \Rightarrow \quad \frac{dt}{R(t)} = \pm \frac{dr}{(1-kr^2)^{1/2}}
\]
(23) receding \(+ \), approaching \(- \)

Consider ray from \(P \) on world line \(r = r_i, @ t = t_i \),
\[
\therefore \int_{t_i}^{t_f} \frac{dt}{R(t)} = - \int_{r_i}^{r_f} \frac{dr}{(1-kr^2)^{1/2}} = f(r_i) = \int_{r_i}^{r_f} \frac{1}{\sqrt{1-kr^2}} \to k = +1
\]
\(\Rightarrow \) same \(f(r) \)
(24)

\(\therefore \int_{t_i}^{t_f+\Delta t} \frac{dt}{R(t)} = \int_{t_i}^{t_f} \frac{dt}{R(t)} = \sum \text{2 succesive light rays: } t_i, t_i+\Delta t, \to \text{ Same f(r)} \)
\[
\Rightarrow \int_{t_i}^{t_f} \frac{dt}{R(t)} = \int_{t_i}^{t_f} \frac{dt}{R(t)} - \int_{t_i+\Delta t}^{t_f} \frac{dt}{R(t)} + \int_{t_i}^{t_i+\Delta t} \frac{dt}{R(t)} = 0
\]

As \(R(t) \) doesn't change much over \(\Delta t \), or \(dt_0 \), take
it out of integral:
\[
\frac{dt_0}{R(t_0)} = \frac{dt}{R(t)} \]
(25)

But \(dt = ds \) on \(dt \) is proper time on substratum
world lines \& \(dt \), and \(dt_0 \) are proper times
as measured by source \& observer.
(25) says interval for O is $R(h)/R(t_1)$ times that for P. In an expanding universe:

$$t_0 > t_1 \implies R(t_0) > R(t_1) \implies O \text{ experiences a RED SHIFT } z = \frac{1+z}{1+z} = \frac{R(t_0)}{R(t_1)} = (26)$$

called a Doppler shift but not the same as SR Doppler shift

If P is near O then $t_0 = t_1 + \Delta t$, so $(28) \implies$

$$1 + z = \frac{R(t_0)}{R(t_0 - \Delta t)} = \frac{R(t_0)}{R(t_0 - \Delta t)} \approx 1 + \frac{R(t_0)}{R(t_0 - \Delta t)} \frac{dt}{R(t_0)} \approx (27)$$

But also:

$$\int_{t_0}^{t_1} \frac{dt}{R(t)} = \int_{t_0}^{t_1} \frac{dt}{R(t)} = \frac{dt}{R(t)} = \frac{dt}{R(t)} \approx \frac{dt}{R(t)}$$

for small Δt, use (24) to see

$$\int_{t_0}^{t_1} \frac{dt}{R(t)} = f(t) \approx R(t_1) \approx R(t_0)$$

Use (27) to get what looks like Hubble's Law:

$$z \approx \frac{\dot{R(t_0)}}{R(t_0)} \approx (28)$$

Cosmological Distance

Absolute distance:

$$d_L = R(t) \int_0^t \frac{dr}{(1 - kr_1)^2} (29)$$

from $dt = d\theta = d\phi = 0$ but it is useless in practice.

An angular diameter distance, but the most useful is luminosity distance:

$$d_L^2 = \frac{L}{4\pi I(1+z)^2}$$

using luminosity and measured intensity I.

Now use (27) & note light spreads from P at t_0 to us at O at t_0.

Light will have spread over a sphere w/ center at P_0 ($t=t_0, r=r_0$), passing through $Q_0(t=t_0, r=0)$.

Surface area for this sphere is:

$$ds^2 = [R(t_0)]^2 (d\theta^2 + \sin^2 \theta d\phi^2)$$

So, as usual line element, the surface area is: $4\pi R^2(t_0) d\theta$

$$L = \frac{1}{4\pi R(t_0)^2}$$

Using (30), we see

$$d_L = r/ R(t_0)$$

(31)

Now define Hubble parameter: $H(t) = \frac{\dot{R}(t)}{R(t)}$ (32)

Then (28) + (32) + (34) $\Rightarrow Z = H(t_0)d_L$

(33)

Hubble's Law - only approx. in Rel. Cosmo.

$H(t_0) = H_0$ and $T_0 = \frac{1}{H_0} \approx 10^{10}$ yr.

Now define the deceleration parameter, q:

$$q(t) = -\frac{\ddot{R}^2}{\dot{R}^2}$$

(34)

Note as $R > 0 \& \ddot{R}^2 > 0 \Rightarrow \ddot{R} > 0 \Rightarrow \ddot{p} > 0 \Rightarrow q > 0 \Rightarrow$

slowing of expansion of the Universe. Direct measurements still very uncertain, but

$H_0 \approx 75 \pm 15$ km/s/Mpc$^{-1}$

and $q_0 = 0.5 \pm 1$ come from observations.

If we now take the 2nd order term in (27) we find:

$$d_L = z \frac{H_0}{c} \left[1 - \frac{1}{2}(1 + q_0)z + \cdots \right]$$

(35)

Differentiating Friedmann's eqm (22) \Rightarrow

$$2\ddot{R}^2 = -\frac{\dot{R}^2}{R^2} + \frac{2}{3} \Lambda R^2.$$ Multiply $\frac{\dot{R}}{2\dot{R}^2}$, use (34), (33), (21) to see

$$q = \frac{4\pi \rho - \frac{1}{3}\Lambda}{H^2}$$

($\Lambda = 0$: $q = \frac{4\pi \rho}{3H^2}$)

(36)
Cosmological Models

Want to solve Friedmann eqns:

$$\dot{R}^2 = \frac{3}{R} + \frac{1}{2} \Lambda R^2 - k$$ \hspace{1cm} (37)

Subject to: \(C > 0, \ -\infty < \Lambda < +\infty, \ k = -1, 0, 1 \) \hspace{1cm} (38)

Can solve via elliptic functions, but specialize to either \(k = 0 \) or \(\Lambda = 0 \)

Flat Space Solutions: \(k = 0 \), so:

$$\dot{R}^2 = \frac{C}{R} + \frac{1}{2} \Lambda R^2$$ \hspace{1cm} (39)

Assume \(\Lambda > 0 \) & let \(u = \frac{2 \Lambda}{3C} R^3, \ \ddot{u} = \frac{2 \Lambda}{3C} \dot{R}^2 \)

Plug into (39): \(\dot{u}^2 = \frac{4 \Lambda}{C} R^3 + \frac{4 \Lambda^3}{3C} \dot{R}^4 = 3 \Lambda (2u + u^3) \) \hspace{1cm} (40)

Assume \(+ \text{ree } \):

\(\dot{u} = (3 \Lambda)^{1/2} (2u + u^3)^{1/2} \) \hspace{1cm} integrate by parts

Assume Big Bang I.C.: \(R = 0 @ t = 0 \Rightarrow \dot{u} = 0 \) so

$$\int_0^u \frac{du}{(2u + u^3)^{1/2}} = \int_0^t (3 \Lambda)^{1/2} dt = (3 \Lambda)^{1/2} t$$

Complete square in \(u \) int., let \(v = u + 1, \ \cosh w = v \):

$$\int_0^u \frac{du}{(2u + u^3)^{1/2}} = \int v \frac{dv}{(v^2 + 1)^{1/2}} = \int \frac{\sinh w dw}{(\cosh w - 1)^{1/2}} = \int_0^w dw = w$$

\(w = \text{arccosh}(v) \)

In terms of \(R \):

$$R^3 = \frac{3C}{2\Lambda} [\cosh(3\Lambda)^{1/2} t - 1]$$ \hspace{1cm} (41)

Assume \(\Lambda < 0 \), let \(u = -\frac{2 \Lambda}{3C} R^3 \) & find

$$R^3 = \frac{3C}{2(-\Lambda)} \left[1 - \cos(3\Lambda)^{1/2} t \right]^{1/2}$$ \hspace{1cm} (42)

For \(\Lambda = 0 \) \(t \text{th} \) \(\Rightarrow R^{1/2} dR = C^{1/2} dt \) and get

Einstein-de Sitter model: \(R = (\frac{3}{2} C)^{1/3} t^{2/3} \) \hspace{1cm} (43)
One can then find $H(t)$ and $q(t)$ from (41), (42), and (43).

\[H(t) = \frac{\dot{a}}{a} = \frac{\dot{R}}{R} = \frac{\dot{r}}{r} = \frac{1}{r} \]

\[q(t) = -\frac{\dot{r}^2}{r^2} = \frac{1}{r^2} \]

Now, note that in the early stages of Big Bang, R is small so $\frac{\dot{R}}{R} \gg \frac{1}{2} \dot{R}^2 R$ in (37).

\[\dot{r}^2 \propto \frac{1}{r^2} \Rightarrow R \propto \left(\frac{t}{\sqrt{c}} \right)^{1/2} \]

so ALL Big Bang Models are $\Lambda = 0$ models @ small t.

Write (39) as: $R^2 = F(R)$, $w/F(R) = \frac{\dot{r}}{r}$ + $\frac{1}{2} R^2$

If $\Lambda < 0$, $F(R) = 0$ @ $R = R_m = \left(\frac{3c^4}{4\Lambda} \right)^{1/2}$

so $\dot{R} = 0$ @ R_m --- a local minimum.

If $\Lambda > 0$, \dot{R} grows w/o bound. Specifically, if $\Lambda > 0$, in large t, $\frac{1}{2} \dot{R}^2 \gg \frac{1}{2} \frac{\dot{R}}{R}$ can integrate:

\[R \propto \exp \left[(\frac{4\Lambda}{3c^4})^{1/2} t \right] \]

Consider Models w/ $\Lambda = 0$:

\[\text{Case: } k = +1, \text{ let } \frac{\dot{r}^2}{c^2} = \frac{\dot{R}^2}{R^2} \frac{1}{k} \quad (48) \]

\[\dot{r}^2 = \frac{\dot{R}^2}{c^2} = \frac{4\dot{R}^2}{4c^2 R^2} = \frac{4\dot{R}^2}{4c^2 R^2} (\dot{R}^2 - 1) = \frac{4\dot{R}^2}{4c^2 R^2} (\dot{R}^2 - 1) \]

Take $+ve \sqrt{}$; & BB L.C.'s $\Rightarrow 2 \int_0^t \dot{u}^2 \frac{da}{a} = \frac{1}{2} \int_0^t \dot{R}^2 \frac{da}{a} = \frac{t}{2}$

Let $u = \sin(\theta) \quad \Rightarrow 2 \int_0^t \dot{u}^2 \frac{da}{a} = 2 \int_0^t \dot{u}^2 \cos^2(\theta) \frac{da}{a} = 2 \int_0^t \dot{u}^2 \cos^2(\theta) \frac{da}{a} = 2 \int_0^t \dot{u}^2 \cos^2(\theta) \frac{da}{a} = \frac{t}{2}$

\[C \left[\sin^{-1}(\frac{1}{k}) \right]^2 - (\frac{1}{k})^2 (1 - Rc)^{1/2} \frac{1}{(1 - Rc)^{1/2}} = \frac{t}{2} \quad (49) \]

\[\text{Case: } k = -1 \Rightarrow C \left[\frac{1}{k} \right]^{1/2} (1 + Rc)^{1/2} - \sinh^{-1}(\frac{1}{k})^{1/2} = \frac{t}{2} \quad (50) \]

\[\text{Case: } k = 0 \Rightarrow \text{Einstein-de Sitter again.} \]

\[\text{NB, } k = +1: \quad H(t) = C^{-1} (\frac{R}{c})^{1/2} (1 - Rc)^{1/2} \quad (51) \]

\[q = \frac{1}{2} (1 - Rc)^{-1} \quad (52) \quad \text{w/ } R \text{ given implicitly by } (49) \]
Classify Friedmann Models

<table>
<thead>
<tr>
<th>$\Lambda > 0$</th>
<th>$\Lambda = 0$</th>
<th>$\Lambda < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = -1$</td>
<td>$k = 0$</td>
<td>$k = +1$</td>
</tr>
</tbody>
</table>

Fig. 23.1: Classification of Friedmann models.

1st Model: Einstein: no expansion (1916)
2nd De Sitter [next page] (1917)
3rd Eddington-Lemaître (1925) - Einstein's world is unstable, so why old, so Einstein, then expands, but at increasing pace $\Rightarrow \rho < 0$
But galaxies should stop forming
4th Lemaître (1935) Nucleogenesis demanded high ρ, ϕ, T early on \Rightarrow Hot Big Bang. This had
(i) expansion from singularity + elements
(ii) slow expansion to \Rightarrow condensation to galaxies
(iii) renewed expansion, recession accelerates
& new structure not likely to form.
De Sitter Model: $p=q=\lambda=0$

Not a rel. cosmo. since it is devoid of matter, but is of historical interest. Violates Mach's principle: (16) \Rightarrow

$$\frac{3}{R^2} - \Lambda = 0 \Rightarrow \frac{R}{\Lambda} = \left(\frac{4}{3}\Lambda\right)^{1/2}$$

Integrate & rescale to absorb constant: $R = \exp\left(\frac{1}{\sqrt{3}/\Lambda}\right)$

$$ds^2 = \exp\left[\frac{2t}{(3/\Lambda)^{1/2}}\right] [dx^2 + dy^2 + dz^2] - dt^2$$

Time-Scale Problem

Early estimate of $H_0 \approx 500$ km s$^{-1}$ Mpc$^{-1}$. $\Rightarrow T_0 = 1.8 \times 10^9$ yr.

Yet $T_{\odot} > 4 \times 10^9$ yr & $T_\odot > 10 \times 10^9$ yr.

Now $\dot{R} \leq 0 \forall t$ (i.e. $\dot{q} > 0$)

then: $t_0 - t_1 = \frac{R(t_0)}{R(t_0)} = t_0 - t_0 < t_0$

Today this may still be a problem:

if $H_0 > 80 \text{ km s}^{-1} \text{ Mpc}^{-1}$, for at least some time. Could obviate if $R > 0$ for at least some time. Note that

$$(17) \times -3 + (16) \Rightarrow \frac{8\pi G (\rho + 3p)}{R^2} = 2A - 6B$$

Now LHS > 0 & if $\Lambda > 0 \forall t$. To allow $R > 0$ we may require $\Lambda > 0$ to fix the time-scale problem.
Standard Models: $\Lambda = 0$

After stellar nucleosynthesis understood & better Cepheid distances $\Rightarrow H_0 < 100$
the time-scale problem was thought to be unimportant, i.e. $T_o \sim 1.5 \times 10^{10}$ yr & $T_o < T_0$ is OK.

Let $\Lambda = 0$ in (37) so:

$$\ddot{R} = \frac{8}{3} \pi R^2 p(t) = \left[\rho(t) - \frac{3H_0^2}{8\pi} \right] \frac{8}{3} \pi R^2$$ (57)

Define the critical density:

$$\rho_c = \frac{3H_0^2}{8\pi}$$ (58)

If $T_0 = 10^{10}$ y then $\rho_c = 2 \times 10^{-29}$ g cm$^{-3}$

Now, inhomogeneous $\approx (0.02-0.03)\rho_c$: **MATTER**

From (36) we get:

$$\Omega_0 \approx \frac{4\pi R^2}{3H_0^2} = \frac{1}{2}\Omega = \frac{1}{2}\rho_c$$ (59)

Case: $k = 0$ \Rightarrow Einstein-de Sitter:

$\rho = \rho_c$, $\rho_0 = \frac{1}{2}$... Has time scale & missing matter problems ... agrees w/inflation

Case: $k = +1$ \Rightarrow Oscillating (or Big Crunch):

$\rho > \rho_c$, $\rho_0 > \frac{1}{2}$... Worse time-scale problem, worse missing matter problem, CLOSED, BOUND UNIVERSE

Case: $k = -1$ \Rightarrow Indefinitely Expanding

$\rho < \rho_c$, $\rho_0 < \frac{1}{2}$... Can fix time-scale problem, don't need much or any dark matter, but ρ_0 is prob. too low:

OPEN, ALWAYS INFINITE UNIVERSE
Early Epochs: Pressure was important & hot enough that radiation dominated matter:

\[T \propto \frac{1}{r}, \quad \rho \propto \frac{1}{r^3} \text{ but } \rho \propto \frac{1}{r^4} \quad \text{(60)} \]

\[\therefore \rho = \frac{1}{3} \rho_r \quad \text{extreme rel. EoS} \quad \text{(61)} \]

Setting \(\Lambda = 0 \) in (16) & (17) & \(p(t) = \frac{1}{3} \rho(t) \Rightarrow \)

\[\frac{\dot{R}^2}{R^2} + \frac{\dot{R}^2}{R^2} + \frac{h^2}{R^2} = 0 \quad \text{(62)} \]

At early times 1st 2 terms dominate & \(\Lambda \) is irrelevant. Then, at small \(t \):

\[R \propto t^{1/2} \quad \text{which is faster than the small } t \text{ behavior we had before (w/o p): } R \propto t^{2/3} \]

i.e. \(p \) exerts its own grav field strengthening collapse (in \(\star \)) and expansion (via time reversal).

Dirac Large Numbers

\[\frac{R_{\text{universe}}}{R_{\text{electron}}} = \frac{c T_0}{e \gamma m_e c^2} \approx 10^{40} \quad \text{(63)} \]

\[\frac{F_{\text{p, electric}}}{F_{\text{p, grav}}} \approx 2 \times 10^{39} \quad \text{(64)} \]

"Number of particles in Universe" = \(\frac{5}{m_p} (c T_0)^3 \approx 10^{79} \quad \text{(65)} \]

These coincidences \(\Rightarrow G \rho T^2 \approx 1 \quad \text{(66)} \)

Machian idea – just enough matter in universe to induce appropriate inertia in local body agrees w/ (66)!
Steady State Model

Perfect Cosmo Principle: Universe is Unchanging on a Large Scale ... must expand, for if static ... thermo $\Rightarrow H \neq 0$ & "heat death"
But $\rho = \text{const} \Rightarrow$ continuous creation of matter
- only at $3\pi H_0 \sim 10^{-46} \text{g cm}^{-3} \text{s}^{-1}$ so no problem.

(Outline: 1) Perfect Cosmo, 2) Weyl's Postulate
3) GR light propagation

- At least Robertson-Walker but stationarity $\Rightarrow R(t) \not\equiv$ curvature $\propto R^{-2}$ is observable; const
- $k = 0$: $H_0 = \frac{R'(0)}{R(0)}$ is obs. \Rightarrow const $\Rightarrow \frac{a}{t} = \text{const}$
- $R(t) = \exp(\pm t)$ or:

$$ds^2 = \exp\left(\frac{2t}{\rho}\right) \left[dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)\right] - dt^2$$

i.e. D'Inverno model — discarded before as empty but now OK, since full GR field eqns don't hold.

(3) Light prop $\Rightarrow \frac{dt}{\exp(\pm t/\rho)} = \pm dr$ (65)

For an incoming ray: $r = T_0 (e^{-t/\rho}e^{-t_0/\rho})$ &

$$d_L = r_0 e^{t_0/\rho} \text{ so rec. lum. dist.}$ Can then show:

$$d_L = \frac{z}{T_0} \text{ [Hubble Law]} \text{ is Exact}$$

$$f = -\frac{1}{3}\rho \text{ always expanding}$$

Field eqns: $C(x^a) \propto \text{OP - geodesic curve}$

$$G_{ab} = 8\pi T_{ab} + C_{ab}$$

& universal length: $C_{\alpha} = \frac{3}{T_0} \Rightarrow$ de Sitter (67) metric

$$D = \frac{3H_0^2}{8\pi} \Rightarrow \text{creation of matter via:}$$

M were Beyond $8\pi T_{ab} = -C_{ab}$ \Rightarrow not patchy

Real Universe: $f > 0$ & Hubble Law inexact. Also $\rho \not= 0$ has evolved.
Inflation: From GUTs - strong electro-weak
Sym. broken @ $t \approx 10^{-34}$
Exponential expansion when energy density dominated by vacuum energy density of a scalar field

So $\rho \approx \rho_0, \Lambda = 0$ take (76) (77)

$$R^2 = \frac{8}{3} \pi \tau R^2 \rho_0 - k$$ (77)

At such early time R^2 term dominates, so:

$$\frac{\dot{R}^2}{R^2} = \frac{8}{3} \pi \tau \rho_0 = H^2$$ (72)

$$\Rightarrow R = R_0 \exp(HT)$$ (73) - deSitter like inflation.

Ending it is possible w/ dissipation in a phase transition from "false" to "true" vacuum.
Solves FLATNESS + HORIZON problems.

Flatness: now: $0.01 < \Omega_0 < 1.0$ by observation
In the past this required FINE TUNING
@ $t = 10^{-33}$ [1.2 - 1.1 x 10^{-57}]! But inflation forces extreme flatness - think of a balloon!

Horizon: now: homog. & isotropic. But only possible if true in early time. BUT standard model not causally connected, so A & B can't know of the other. Inflation means A is very closed could be connected at a very early time, then taken out of connection w/ exponential expansion.

Connects w/ ANTHROPIC PRINCIPLE & many universes idea.
Fig. 3.7: The complete history of the Universe.
Fig. 4.3: The development of primordial nucleosynthesis. The dashed line is the baryon density, and the solid lines are the mass fraction of 4He, and the number abundance (relative to H) for the other light elements.

earlier freeze out of the neutron-to-proton ratio: $T_F \propto g^1/6$, at a high value, and hence more 4He. Later we will use the dependence of T_F up
4.5 Abundances: Observations

Fig. 4.4: The predicted primordial abundances of the light elements as a function of ν. The error bar indicates the change in Y_p for $\Delta\tau_{1/2} = \pm 0.2$ min.