CHARA TECHNICAL REPORT

No. 81 15 SEPTEMBER 1998

CHARA Array User Interface:
Progammer’s Manual

T.A. TEN BRUMMELAAR (CHARA)

1. INTRODUCTION

Any control system needs a user interface and the CHARA Array is no exception. This
document describes the first version of the user interface to be used on all system controllers
within the CHARA Array system. While GUI type interfaces are very popular, and normally
considered ‘a must’ for any modern system, due to severe time constraints we will be using
a text-based system already fully developed. We will move towards a GUI system in the
‘fullness of time’.

The system to be used is based on the user interface used at SUSI which in turn is based on
a commercial system developed by the CHIP software company in Australia (now trading
under the name CHILLI). It is a text-based system, and while best run within an xterm(1)
window?, can also run on any text terminal. It relies on the ncurses(3) package for screen
control and provides mouse, menu, socket and command line control.

While the primary user interface is text only, if it is run within an xterm, programmers can
use the simpleX(3) library to perform graphics operations on the X-windows screen. Other
general purpose libraries are available including the numerical recipes library for math, the
rwfits(3) library for FITS file manipulation and the filter(3) library for implementing digital
filters. These libraries will not , however, be documented in this report.

An example application program is listed in Appendix A.

2. WINDOWING

It is assumed that the user is familiar with the ncurses(3) screen manipulation library.
Separate documentation is available on this package within the control system software tree.
Basically, ncurses provides an abstraction of the screen in memory where a programmer can

!Center for High Angular Resolution Astronomy, Georgia State University, Atlanta GA 30303-3083

TEL: (404) 651-2932, FAX: (404) 651-1389, FTP: ftp.chara.gsu.edu, WWW: http://www.chara.gsu.edu.
Funding for the CHARA Array is provided by the National Science Foundation, the W. M. Keck Foundation,
the David and Lucile Packard Foundation and by Georgia State University.

*Note that sometimes things go wrong in an xterm, you must have the environment variable TERMINFO
defined or curses will not know how to work in an xterm. This need not be set to anything, it just has to
exist in the environment

TR 81 — 1



TECHNICAL REPORT NO. 81

create new windows, write to them, get data and so on. The screen itself does not change
until the programmer issues a “refresh” command, at which point ncurses works out the
optimum actions required to make the screen look the way it should. Operations can be
performed on any number of windows on the screen, and the system removes much of
the tedium of screen control. Ncurses also provides mouse and input stream functionality,
although the mouse data is only available when running within an xterm(1).

2.1. Layout and predefined windows

The user interface breaks the screen up, vertically, into four basic areas: the status area,
the main working area, the system area, and the command line. Each of these has at least
one predefined global window.

The status area takes up the top 9 lines of the screen and can be used for any purpose, most
often displaying status information. Frequently, these data are created and displayed using
background processes (see Section 4). Only one window is defined within the status area
called (imaginatively enough) status_window. This window is automatically refreshed once
per second by the background control system and need not be refreshed by the programmer,
unless you desire a faster refresh rate.

The main working area is where the menu system is placed and where most application
routines put their text, edit screens and so on. The main working area is contained within
a box and is 10 lines long. There are three global windows defined within the main work-
ing area. First of all there is main_window which can be used at any time and fills the
entire working area. The other two windows together also fill the entire main working
area: heading_window takes up the top two lines and is used for titles and headings, and
sub_main_window occupies the rest of the main working area.

The system area takes up the next two lines and is used to display system messages. The
first line is by default highlighted. The system area is covered by the system_window.

The last line of the screen is the command line and is not normally used by application
programs.

Many functions are available for writing to the various windows, in fact unless you are
creating special displays it is rarely necessary to use raw ncurses to display things in any of
the global windows. For example, the function call

heading (heading_window,"First Line","Second line");

places the text First Line centered and highlighted in the first line of heading_window
and the text Second line in the second line. Consult the manual pages and the program
in Appendix A for more examples of the use of these windows and function calls. Like most
libraries of this type, there is probably already a function written to do whatever it is you
want to do; try to use them when you can.

Of course, the programmer is at liberty to create new windows and overlay them on the
global windows at any time. Care should be taken to remove them again when you are
finished with them. It is also possible to get control of the entire screen and use ordinary
printf statements. You can grab complete control of the screen using the function call

plain_screen_on() ;

TR 81 — 2



CHARA USER INTERFACE

and release it again with
plain_screen_off ();

This is not often required and is not recommended. One example of the use of this function
is the standard serial port function asccom, which provides a terminal like connection to a
serial port.

2.2. The Active Window

The user interface has many other windows (such as, for example, the error message win-
dow), and these may pop up on the screen unexpectedly. This happens most often when
an error occurs in a background process. When this pop-up window is removed the user
interface needs to know which window to refresh so that the screen can be returned to its
original state. This is known as the active_window, a global variable that is a pointer to a
window. The user interface will, by default, refresh the active window whenever it interferes
with the screen. It is the programmer’s responsibility to ensure that the active window is
set to the correct value. For example

active_window = main_window;
werase (main_window) ;
mvwaddtrs (main_window,0,5,"Here we are in the main window);

wrefresh(main_window) ;

If for some reason the user interface places a new window over the main window it will
know that it must refresh the main window when it is done. It should be standard practice
to set the active window before writing to any predefined or user defined screen area.

3. ERROR MESSAGES

All programs have error conditions, especially those that control hardware, and these errors
need to be reported to the user. Errors are sent to the user via the obviously named function
error (). This function works very much like a printf () function, but places the text in a
new window, created by the error () function itself. An example of the use of the function
is

if (there_is_an_error)
{

return error (ERROR,"Something has gone wrong.");

}

and other examples of the use of the error () call can be found in Appendix A.

The error () function’s first argument is an error level, which is returned by the function.
The possible error conditions are

TR 81 — 3



TECHNICAL REPORT NO. 81

NOERROR — No error has occurred, normally considered a good thing.

MESSAGE — No error has occurred, but we want to tell the user something anyway.

WARNING — An error has occurred, although it probably isn’t serious.
e ERROR — A serious error has occurred.

e FATAL — A fatal error has occurred. The program is stopped altogether.

Note that in the example above, and in most cases in practice, the error causes the function
to exit, returning the error level. This is not always the case but in many situations it is the
appropriate behavior. Any user callable function, or background job, must return an error
level, usually NOERROR. This is so the user interface can react to any errors. For example, if
a background process returns an error level other than NOERROR, background processing is
turned off to ensure that the error is not repeated.

4. BACKGROUND PROCESSING

The user interface provides a very simple background processing system. Background jobs
are normally used to interrogate hardware and place status information on the status screen
but, as long as they require no user interaction, can perform any task. Examples of back-
ground tasks are given in Appendix A. A declaration of a background task will always take
the form

int i_run_in_the_background(void) ;

Thus a background job can take no arguments, but always returns an integer, the error
level, to the background control system. A background job is added to the list of jobs using
the function

background_add(i_run_in_the_background) ;
and removed using the function
background_del (i_run_in_the_background) ;

The background system is not a multi-stream system and is quite simpleminded. When-
ever the system is waiting for the user to type a key, or use the mouse, via the function
get_command (), it will run each background task in turn. For this reason it is important
that any background task be short and fast, otherwise keyboard response time can be af-
fected. So, if you wish to have a long and involved process run in the background (which
is not recommended), you need to break it up into several smaller, and faster, background
tasks.

A second implication of the way background processes works is that all background process-
ing can be stopped by a user callable function. For example, a function that uploads a large
file and does not get any data from the keyboard never calls the function get_command ()
and therefore never allows the background tasks to run. If you write a function such as this
it is a good idea to manually call the background tasks every now and then using the call

TR 81 — 4



CHARA USER INTERFACE

background() ;

which will run the next background job in the queue and return. In this way it is possible
to continue displaying status information while performing long tasks.

It is not always appropriate to have the background jobs running. For example, you may
require a window so large that it covers the status window and you would not want status
information to overwrite it every second. Background processing can be turned off using
the call

background_off (0,NULL) ;
and started again with the call
background_on(0,NULL) ;

where the arguments (0,NULL) are included because these are user callable functions, and
like the normal C function main(int argc, char **argv) accept command line argu-
ments. Since we do not a need a command line here we set the number of arguments, the
first parameter, to zero.

These functions are similar to the other user callable functions background_start (0,NULL)
and background_stop(0,NULL), but not the same. While they may seem redundant they
have slightly different uses. Background processing can be started only once, while it can
be turned off and back on again many times. Also, once the background processing has
been stopped it can not be turned on again, although it can be restarted. In order to avoid
confusion, it is best to use the on and off commands within a function while starting and
stopping is up to the user.

5. STARTING THE USER INTERFACE

There are only a few things that need to be done in order to get the user interface up and
running:

1. Get any arguments from the command line, normally a socket port to use.

2. Put up a title page. For this the functions ui_clear_screen(), center_line(),
put_line(), and wait_for_title() can be very useful.

3. Initialize the global string pointer TITLE to point at a string to be used, as you may
have guessed, as a title for the program.
4. Call the user interface initializer function

initialise_ui("menu.ini", "help.ini", port);, where the first argument is the
file containing the menu setup (see Section 6.1), the second argument is the help
initialization file (see Section 8) and the final argument is a socket port number to
use for outside commands (see Section 12).

5. Add the background tasks to the background processing list using the function
background_add ().

TR 81 — 5



TECHNICAL REPORT NO. 81

6. Start up the user interface with the call start_ui().

It is also common to add an exit (0) statement at the end of the main() function. While
this is redundant (you can never return from start_ui), it avoids some compiler warning
messages. Assuming that no errors are found in the help or menu initialization files the user
interface will now be up and running. Note that the background processing is, by default,

not on and needs to be turned on either by the user, or by the autolist system (see Section
6.1.1).

6. ADDING A NEW COMMAND

Each command can be looked upon as a stand alone C program which can display it’s
output in an ncurses window, or within it’s own X window. Other than the fact that it will
not be called main(), the declaration of a user callable function is the same, that is

int new_function(int argc, char **argv);

where argc is an integer representing the number of command line arguments, including the
name of the function itself as argument 0, and argv is an array of strings, each containing
one of the command line arguments. As discussed in Section 3, the return value is an error
level, and hopefully NOERROR. The source file should include the header file charaui.h and
be linked to the rest of the system.

Example user callable functions are given in Appendix A. Normally, the first thing is to
either allow, or not allow, socket control of the function (see Section 12), then set the active
window, check and analyze the command line arguments and, finally, perform whatever
task is required.

In order to connect the new command with the rest of the system, a command line name
must be associated with the function. Thus, if the user types this string on the command
line the function will be invoked, and the menu initialization file has a useful name for
the function as well. This command line name is set up by editing the file functs.c, an
example of which is given in Appendix B. This is an array of structures, each containing
a string defining the command line name, and a function pointer to the actual function.
This is all that is required to add a new function to the system. More than one entry for
the same function is allowed so you can set up aliases. Furthermore, note that there are a
large number of predefined functions available and it is normal to leave these in any user
interface.

6.1. The menu initialization file

Having edited the function lookup table in functs.c, the new function is now accessible
from the command line, but not from the menu system. In order to add it to the menu
system you need to edit the menu initialization file menus.ini (which is only a default name
by the way; you can call this file anything you want really), an example of which is given
in Appendix C.

Each menu defined in this file begins with a statement of the menu’s name:

MENU MenuName

TR 81 — 6



CHARA USER INTERFACE

The menu name must be a single unique word, and there must be one menu named MAIN.
The parser code of the menu initialization file is not sensitive to case. The menu name
definition is followed by up to ten lines, each representing a menu item. For example,

asccom Communicate with a serial port

The first word of each menu item definition is either a function or a menu name, while
the remaining text will appear on the screen and should explain the menu item to the
user. When invoked by the user, a menu item will either move you into a new menu, if it
represents a menu name, or run a function.

With this system, a user is free to re-arrange the menu structure at will without the need
to recompile the whole program.

6.1.1. The Autolist

Apart from menu definitions, the menu initialization file also contains the definition, if any,
of the so-called autolist. The autolist is a list of function calls, including arguments and
possible goto statements, which can be run as a single command by the user. Autolists are
most frequently used in the hardware initialization phase of a control program, that is, at
‘boot-up’ time.

The autolist definition does not have to be included, but if it is must be the last thing in
the menu initialization file and must begin with the keyword AUTOLIST. Each line after that
is either a goto? statement, or a line of text you would normally type at a command line.
If it is a goto, the label is the command line name of a function elsewhere in the list and
the user will be given the option of moving to that command or continuing.

7. CREATING SCRIPTS

A user will often run the same series of commands many times, which can get dull if they are
forced to continually type the same commands over and over. Therefore, a simple scripting
language has been made to create new commands at run time. The command to read a
new script is

script file

where file is the name of the file containing the script. If no extension is there it assumed
to be .scr. The new command line name for the script will be the same as the file name.
Since scripts are made at run time they can not be part of the menu hierarchy and must
be invoked from the command line. Scripts can be created within the autolist but may not
be used within the autolist.

Like the autolist, a script consists of a series of commands, one per line. Any text after
the character ‘#’ will be considered a comment and ignored. Each command can have any
or all arguments exactly as you would type them on the command line. There are some
special commands unique to scripts as well:

3Yes I know, gotos are not ‘elegant’ but neither am I.

TR 81 - 7



TECHNICAL REPORT NO. 81

e label: - Mark this position and call it label.

e onmessage label - If any function called after this line returns MESSAGE go to the
position in the file marked by label.

e onnoerror label - If any function called after this line returns NOERROR go to the
position in the file marked by label.

e onwarning label - If any function called after this line returns WARNING go to the
position in the file marked by label.

e onerror label - If any function called after this line returns ERROR go to the position
in the file marked by label.

e onfatal label - If any function called after this line returns FATAL go to the position
in the file marked by label. This is rarely used as a fatal error normally causes the
program to crash.

e onyes label - If any function called after this line returns YES go to the position in
the file marked by label.

e goto label Move to the position in the file marked by label.

There are also three user callable functions that come in very handy in scripts with the
following standard command line names:

e message text - Displays the text using the call message (system_window,text).

e ask text - Asks the user a question using the call ask_yes_no(text,"") and returns
the result.

e nothing - Does nothing.

e endscript - An alias for nothing, often useful as a marker of the end of the script.

An example of a script file is given in appendix A.

8. ONLINE HELP

It is often said that online help systems are normally 90% accurate and only 10% useful.
Nevertheless the CHARA wuser interface includes online help. Like the menuing system,
online help is completely user configurable by editing text files. To associate a text file with
help you need to edit the initialization file help.ini (like the menu initialization file this
name is arbitrary). An example help initialization file is given in Appendix B.

Each line of the help initialization file contains a reference to a help file and a description
of the help. Note that in the example file in Appendix B there are two lines for each help
file, one with a lengthy description of the file, and one with the command line name that
the file is about. In this way the user can select from a list of descriptive titles, or simply

type

help command

TR 81 — 8



CHARA USER INTERFACE

where command is the name of a command. Furthermore, when invoke from the menu
window <7> entry the menu system will look for a help file with the same name as its
command name.

Help files themselves are simple text files with embedded commands, similar to nroff or
latex commands. An example help file is given in Appendix C. The help text file formatting
language is very simple, as it only has four commands:

e .center (Yes this was written in Australian) which will center the next line of text,
e .paragraph which will force a new paragraph,
e .nl which forces a new line, and

e .tab which forces a tab.

Any other text will be placed into the display structure (see Section 11).

9. USING THE MOUSE

Apart from computer luddites like myself many people like to use a pointing device when
working with software. The user interface includes mouse support, directly from the ncurses
package, and responds to mouse clicks in (hopefully) predictable ways. You can include
mouse support in user callable functions too, as shown in the example code in Appendix A.
Note that the mouse functionality will only work when the program is run inside an xterm.
Be sure to put any mouse code in between

#ifdef __NCURSES_H
and
#tendif

statements so that if you should compile the code on another system without mouse support
it will still work. Mouse support is not part of the standard curses package and not all
systems will have ncurses. All Linux systems do, so this should not be a problem for us.

A mouse click is viewed by the system as the same as a keyboard event. A call to the
function get_command() will return the next key pressed or the macro KEY_MOUSE if the
mouse has been used. A call to the function getmouse (&mouse) will then return information
about the mouse event in the structure

MEVENT mouse; /* A mouse event. */

This structure contains a field mouse.bstate which will tell what kind of mouse event
happened, for example LEFT_CLICK or RIGHT_CLICK and where the mouse was, in terms of
text position on the screen, in the fields mouse.x and mouse.y. Refer to the ncurses manual
for more on using the mouse in an xterm.

TR 81 -9



TECHNICAL REPORT NO. 81

10. GETTING INPUT — THE EDITORS

One common requirement of a user callable function is to get data from the user. This is
often done using command line arguments,as described in Section 6, or alternatively using
some kind of editor. Several methods are provided by the user interface, ranging from
getting a simple YES/NO response to a full screen page editor. The full screen editor is
beyond the scope of this document, and is in practice rarely required, so only a few of the
smaller editors will be discussed here. Examples of the use of these editors can be found in
the example program in Appendix A.

The first basic editor is the function 1line_edit which has the declaration

int line_edit(

WINDOW *win, /* Window that string lives in */

int y, int x, /* Position in window to place string */

char *string, /* The string to edit */

int 1length, /* The length of the string including NULL */

int value_type, /* Type of value string will hold ie
* INTEGER, FLOAT or STRING */
bool (*value_check)(), /* Function to test value of string */
bool insert_on) /* TRUE if we are to go
* mode, FALSE if we are to go back to whatever
* mode we were in before.

*/

This function lets the user edit a string, and emulates both a standard editor and the Unix
editor vi; that is, if you type the escape key you are in command mode and keys such as
j, 1 and w do as you would expect them to do (i.e., go down a line, go right one character
and go forward one word). The value_type parameter is to let the editor know what kind
of value is required. This can have three different values:

1. STRING — any character will be allowed.
2. INTEGER — only numeric characters will be allowed.

3. FLOAT — only numeric characters, ‘+’, ‘-’, ‘E’ and .’ will be allowed.

The parameter value_check points to a function that can be used to test the final value
of the string. It gets the string as a parameter, performs the test and returns either TRUE
or FALSE. If the result is FALSE the user is forced to re-edit the string. In cases where you
do not need to perform these tests you can use the inbuilt function return_true (), which
always returns TRUE.

When running within an xterm the line editor is aware of the mouse and will move the
cursor to the appropriate position when the user left clicks inside the line being edited. The
return value of line_edit () is the key used to exit the function.

The second basic editor is for enumerated types and has the following declaration:
int pick_choice(

WINDOW *win, /* Window that value lives in */
int y, int x, /* Position in window to place value */

TR 81 — 10



CHARA USER INTERFACE

int *value, /* Variable to be set and default */
char *stringsl[], /* The array of strings to show */
bool (*value_check)()) /* Function to test value */

In this case the array of character pointers strings contains a set of strings that describe
each of the enumerated type choices. Fach of these strings must be the same length and
the final entry in the array must be NULL. The enumerate type is assumed to have the first
value of 0. Hitting the space bar advances the choice while the return key will set the
parameter pointed to by value to the current choice. Like 1ine_edit () if pick_choice()
is run inside an xterm it does sensible things when the user left clicks the mouse. Also like
line_edit (), the return value is the key used to exit the function.

The third basic editor is for asking question that require a yes or no response. It has the
declaration

int ask_yes_no(char *stringl,char *string2)

The two strings are displayed on the two lines of the system window and the function waits
for either a ‘y’ or ‘n’ key as a replay. The return value will be either YES or NO.

There is also a ‘compound’ edit function called quick_edit () with the declaration:

int quick_edit(

char xitem, /* string describing what is being changed */
char *status, /* Default value */

void #*value, /* pointer to string to be played with */
char *stringsl[], /* string array for enumerated types */

int value_type) /* STRING, FLOAT, INTEGER or ENUMERATED */

This function is probably the most commonly used function for getting single values from
the user. It puts up a prompt message in the system window, based on the string item and
then uses either 1ine_edit () or pick_choice() on the command line to get the value. If
the value_type is ENUMERATED the function uses pick_choice() and you need to supply
the array of strings, otherwise 1ine_edit () is used and you can set strings to NULL. As
before, the return value is the key used to exit the function. It is up to the user to scan the
final value out of the string.

11. SCROLLING TEXT IN A WINDOW

When you have a lot of text to display, more than can fit within a single window, you can
use the function void scroll_text (WINDOW *win) to scroll this text in a specified window.
The text must first be placed into the global display structure,

struct sdisplay {
int number_items;
char *string [NUM_TEXT_LINES];

} *display;

TR 81 — 11



TECHNICAL REPORT NO. 81

where number_items is set to the number of lines and the array of character pointers
string[] points to each line in turn, assumed allocated by the programmer. Before filling
this structure it is safest to call the function clear_display().

If you want to place all the text in a file into a scroll window you can use the function
text_format () which has the declaration

void text_format(WINDOW *win, char *filename);

In fact, this is the function used by the online help system discussed in Section 8, and it
will understand the same formatting commands. The function printd(), which works like
printf, can be used to place a line of text into the display structure.

12. SOCKETS

When you have multiple control systems, each with its own user interface, it is often neces-
sary to be able to move data from one system to another, or control one system by another.
It is also often useful to be able to remotely type commands when you are not physically
behind the console of the machine. This functionality is provided in the user interface using
standard Unix sockets.

12.1. Command Socket

One of the parameters listed in Section 5 as a requirement for starting the user interface is a
port number to use for a command socket. This must be an unused port but can otherwise
be any number. This port is opened and the user interface listens to this port looking for
commands. This is done as part of the background processing, so no socket commands will
be seen if the program is servicing a request from a user on the physical console. In fact, a
user at the console will always get priority over a socket user.

The command socket works exactly like the command line, although not all commands will
be allowed over a socket. There is not much security on the sockets, but there is a macro
defined in the header file charaui.h defining the allowed domain from which command
sockets will be accepted. Right now this is set to

#define ALLOWED_DOMAIN "mtwilson.edu"

so only machines on the mountain will be able to use the sockets. It is also possible to define
the macro STANDALONE within the source file socket.c to compile a version for a machine
not connected to a network. The maximum number of simultaneous commands sockets is
set by the macros MAX_CONNECTIONS defined in charaui.h.

If you plan to allow a socket user to run one of you functions be sure to add a line like
socket_test_args(3,"argl arg2 arg3");

to the top of the function. This ensures that the socket user types the correct number of

arguments. In this example there are three command line arguments required going by the

names argl, arg2 and arg3. If you do not want to allow socket calls to a function put the
line

TR 81 — 12



CHARA USER INTERFACE

no_socket();

at the top of the function.

The user on the keyboard is able to log all socket commands, monitor all connections, block
all sockets and so on. Of course, these functions must be placed into the command definition
structure defined in the file functs.c. See Appendix B for an example and a list of these
standard functions.

12.2. The active socket

If you are going to allow socket commands in a function, and that function needs to display
things, you will need to add extra flexibility to that function. It must know whether it has
been called by a keyboard user, in which case it puts the stuff onto the screen, or by a
socket user, so it sends the data to the socket. This is done by checking the global variable
active_socket. If active_socket is set to -1 the function was called by a user typing at
console and the function should send its data to the screen. If active_socket is not set
to -1 the command was sent by a socket user and active_socket will be set to the file
descriptor of that socket. All the output should be sent to that socket with a call like

socket_print (active_socket,"The result is %f.\n",result);

The function socket_print behaves just like the standard printf except the results are
sent to a socket. You can send a message to all socket users with the function

all_socket_print("Hello socket users");

which also behaves a lot like printf.

12.3. Data Sockets

Apart from the command socket, automatically created on startup, it is also possible to
create new sockets for moving data around from one machine to another, or indeed to send
a command to a different control program. It is entirely up to the programmer to decide
on data protocols and so on. The follow functions are available for socket use:

int open_data_socket(int port);

int call_open_data_socket(int argc, char **argv);
void close_data_socket(void);

int call_close_data_socket(int argc, char **argv);
int read_data(void *buf, int n);

int read_data_fast(void *buf, int n);

int data_ready(void);

int write_data(void #*buf, int n);

int write_data_fast(void *buf, int n);

int data_connected(void);

int data_open(void);

Please refer to the various manual pages for more information on these functions.

TR 81 — 13



TECHNICAL REPORT NO. 81

12.4. Connect Sockets

Both the command and data sockets will ‘listen’ for incoming data. Sometimes it is neces-
sary to open a socket that will connect to another program which has already established
a ‘listening’ socket. The function open_connect_socket () will create such a socket. This
function will either return the socket file descriptor or -1 if the action fails. The most
common reason for failure is the non-existence of the socket you wish to connect to.

13. COMPILING AND LINKING

Of course, once you've written it, the program must be compiled and linked. An example
makefile for doing this is given in Appendix D. There are a few important points for the
compile and link stages:

e Each source file must include the header file charaui.h.
e | recommend using the flags -g -0 -Wall -pedantic when compiling using gcc.

e The program must be linked to the user interface library, the ncurses library, the math
library and the standard C library. The link flags -1charaui -lncurses -1lc -1m
will achieve this.

One final comment: as with many new programming environments, you will probably find

it easier to grab a working controller user interface program and fiddle with it rather than
starting from scratch.

TR 81 — 14



CHARA USER INTERFACE

A. EXAMPLE APPLICATION PROGRAM

/************************************************************************/

/* testui.c x/
/* */
/* Test program for CHARAUI. x/
/************************************************************************/
/* */
/* CHARA ARRAY USER INTERFACE */
/* Based on the SUSI User Interface */
/* In turn based on the CHIP User interface */
/* */
/* Center for High Angular Resolution Astronomy */
/* Mount Wilson Observatory, CA 91001, USA */
/* */
/* Telephone: 1-626-796-5405 */
/* Fax : 1-626-796-6717 */
/* email : theo chara.gsu.edu */
/% WWW : http://www.chara.gsu.edu */
/* */
/* (C) This source code and its associated executable */
/* program(s) are copyright. x/
/* */
/3 ok ks ok ok sk ok o K ko o koK ok ok ok ok sk ok ok sk sk ok Kok ok sk ok ok ok ok sk ok ok sk ok sk sk sk ok Kok ok sk ok kok ok ok ok /
/* */
/* Author : Tony Johnson & Theo ten Brummelaar x/
/* Date : Original Version 1990 - ported to Linux 1998 */

/************************************************************************/
#include "charaui.h"

int time_status(void); /* Example background job below */
int data_status(void); /* Background job tests data socket */

int main(int argc, char **argv)
{

int port;
/* Check command line */
if (argc !=4)

{
fprintf (stderr,"usage: %s menufile helpfile port\n",argv[0]);

exit(-1);
}
sscanf (argv[3],"%d",&port) ;
/* Title page. */

ui_clear_screen();

TR 81 — 15



TECHNICAL REPORT NO. 81

put_line("");

center_line("CHARA USER INTERFACE TEST ROUTINE");
put_line("");

center_line("The CHARA Array");

center_line("Center for High Angular Resolution Astronomy");
center_line("Mount Wilson Observatory, CA 91001, USA");
put_line("");

center_line("Telephone: 1-626-796-5405");
center_line("Fax: 1-626-796-6717");

center_line("email: theo chara.gsu.edu");

center_line ("WWW: http://www.chara.gsu.edu");
put_line("");

center_line("(C) This executable program is copyright.");
wait_for_title();

/* Initialize the user interface */

TITLE = "TESTUI VERSION 0.0";
initialise_ui(argv[1], argv[2], port);

/* Setup background job(s) */

background_add(time_status) ;
background_add(data_status) ;

/* Let’s go! */

start_ui(); /* Should never return from here. */

exit (0);
}
/*
* Here follows and example background job.
*/
#define clean(y,x) mvwaddstr(status_window,y,x,\

Il)

/************************************************************************/
/* time_status()

/*

/* Displays the time in the status window.
/************************************************************************/

int time_status(void)

{

long current_time;
struct tm *now;

TR 81 — 16

*/
*/
*/



CHARA USER INTERFACE

time (&current_time) ;

now = localtime(&current_time) ;

clean(0,0);

wstandout (status_window) ;

mvwaddstr (status_window,0,0,"Local Time : ");

wstandend (status_window) ;

wprintw(status_window, "%2d:%02d:%02d",
now->tm_hour ,now->tm_min,now->tm_sec) ;

return NOERROR;

} /* time_status() */

/*
* String for enumerated type
*/
char xexample_types[] = {

"Type One ",

"Type Two ",

"Type Three",

"Type Four ",

"Type Five ",

NULL

s

/KA ks ok ok ok o ok ok o sk ok o sk ok o sk ok ook o oK ok o ok o K ok o ok ok K ok o Kok sk ok ok ok o sk o sk ko sk o Kok sk ok ok sk o K ok sk ok K ok ok /
/* example() x/
/* */
/* An example function showing various windows and editing functions.  */

/************************************************************************/

int example(int argc, char **argv)

{
int an_int;
float a_float;
char a_string[81];
int an_enumerate;
#ifdef __NCURSES_H
/*
* Note: Only ncurses has mouse support, and only for xterms
*/
MEVENT mouse; /* A mouse event. */
#endif

no_socket();

/* Clean things up */

TR 81 — 17



TECHNICAL REPORT NO. 81

werase (command_window) ;
wrefresh(command_window) ;

/* Have a look at the commands, just like a C programme */

*a_string = 0;
for (an_int=0; an_int<argc; an_int++)
{
strcat(a_string,argv[an_int]);
strcat(a_string," ");

¥

/* Put it up into the warning/error window call */

error (WARNING,
"This is the warning/error window. You typed :\nJs\nLast line.",
a_string);

/*
* Introducing the main_window.

*/

active_window = main_window; /* So system knows what you’re up to. */
werase (main_window) ;
mvwaddstr (main_window,0,0,"This is the main_window.");
mvwaddstr (main_window,2,0,

"You can do what you like in the main_window.");
wrefresh(main_window) ;

/*
* Introducing the system_window

*/

message (system_window,
"This is the system_window, it’s for messages like this:\n\
Type a key to continue.");

/*
* Here’s how to poll the keyboard.
*/
while (!kbhit())
{
background(); /* Process background jobs while we wait */
}

an_int = get_command(); /* Got to clear the character! */
werase (system_window); /* And clean up the system_window */
wrefresh(system_window) ;

/*

TR 81 — 18



CHARA USER INTERFACE

* We can do general editing in any window with line_edit();

*/

strcat(a_string,"Like this one");

mvwaddstr (main_window,4,0,"Like editing a line of text : ");

if (line_edit(main_window,4,30,a_string,30,STRING,return_true,TRUE) ==
KEY_ESC) return NOERROR;

error (MESSAGE, "The string ended up as:\n}ks",a_string);

/*
* Introducing the heading and sub_main_windows

*/

active_window = heading_window;
heading(heading_window,"This is the heading_window.",
"It’s used often for headings obviously.");

active_window = sub_main_window;
werase (sub_main_window) ;
mvwaddstr (sub_main_window,1,0,"This is the sub_main_window.");
mvwaddstr (sub_main_window, 3,0,

"In the heading window the first line is always centered.");
mvwaddstr (sub_main_window,4,0,

"The second line isn’t.");
mvwaddstr (sub_main_window,5,0,

"You can do what you like in the sub_main_window.");
mvwaddstr (sub_main_window,6,5,

"It’s for general purposes (this line at (6,5))");
wrefresh(sub_main_window) ;

message (system_window,"Type a key to continue.");
while(!kbhit()) background() ;

an_int = get_command() ;

werase (system_window) ;

wrefresh(system_window) ;

/* Try and edit an enumerated type */

an_enumerate = 0; /* Set the default */
if (quick_edit("Example type",example_types[0],
&an_enumerate,example_types,ENUMERATED) == KEY_ESC)

return WARNING;

message (system_window,"You’re selection was %s\nType a key to continue.",

example_types[an_enumerate]) ;
while(!'kbhit ()) background();
an_int = get_command();

/*

* Try and edit an string type
* Specify STRING type let’s the editor to accept

TR 81 — 19



TECHNICAL REPORT NO. 81

* any value character.

*/

sprintf (a_string,"This is the default. "),
if (quick_edit("Example string",a_string,
a_string,NULL,STRING) == KEY_ESC) return NOERROR;
message (system_window,"You’re string is %s\nType a key to continue.",
a_string);
while(!kbhit()) background() ;
an_int = get_command();
werase (system_window) ;
wrefresh(system_window) ;

/*

*

Try and edit an integer type
Specify INTEGER type forces the editor to only accept
* numerals as input.

*/

*

an_int = 42; /* Set the default */
sprintf (a_string,"%d " an_int); /* Leave room now */
if (quick_edit("Example int",a_string,
a_string,NULL,INTEGER) == KEY_ESC) return WARNING;
sscanf (a_string,"%d" ,&an_int);
message (system_window,"You’re integer is ’%d\nType a key to continue.",
an_int);
while(!kbhit()) background() ;
an_int = get_command() ;
werase (system_window) ;
wrefresh(system_window) ;

/*

* Try and edit an float type

Specify FLOAT type forces the editor to only accept
* numerals decimal places etc as input.

*/

*

a_float = 3.1415; /* Set the default */
sprintf (a_string,"%f " a_float); /* Leave room now */
if (quick_edit("Example int",a_string,
a_string,NULL,FLOAT) == KEY_ESC) return WARNING;
sscanf (a_string,"%f",&a_float) ;
message (system_window,"You’re integer is %f\nType a key to continue.",
a_float);
while(!'kbhit ()) background();
an_int = get_command();
werase (system_window) ;
wrefresh(system_window) ;

/* There’s even mouse use. */

TR 81 — 20



CHARA USER INTERFACE

#ifdef __NCURSES_H
error (MESSAGE, "There’s even mouse support in an Xterm.\
\nAfter clicking on ESC below, left click the mouse or type <ESC>.\n");

while (TRUE)
{
if ((an_int = get_command()) == KEY_ESC)
{
break;
}
if (an_int != KEY_MOUSE)
{
error (WARNING, "No silly the MOUSE!");
continue;
}

getmouse (&mouse) ;

if (mouse.bstate '= BUTTON1_CLICKED)

{
error (WARNING,"LEFT click please!");
continue;

¥
error (MESSAGE,"You click it at position (%d,%d).\n\
Note that the mouse works on most things in the interface already.",

mouse.x, mouse.y);
break;

#endif
/* Unless there’s a problem, return NOERROR */
/* You can ask questions too */
if (ask_yes_no("You can ask questions too like...",

"Do you want to report an error?") == YES)

{
return WARNING;
}
return NOERROR;
} /* example() */

/] sk ke sk sk ks ks ks ks ke sk ke sk sk ok ok ks sk ok sk ks ks sk sk ks sk sk sk sk sk sk sk sk sk sk ke sk ke sk ok sk o ok ke sk sk ok ok ok ok ok /
/* data_status() */
/* x/

TR 81 — 21



TECHNICAL REPORT NO. 81

/* Tries to read from the data socket. Reports what it gets and sends  */
/* it straight back again. */
/************************************************************************/

int data_status(void)
{
int len;
char s[256] ;
long current_time;
static long last_time = O;

clean(1,0);
wstandout (status_window) ;
mvwaddstr(status_window,1,0,"Data Ready : ");
wstandend (status_window) ;
if (data_ready())
{
wprintw(status_window,"YES");
len = read_data(s,256);
clean(2,0);
wstandout (status_window) ;
mvwaddstr (status_window,2,0,"Data Read : ");
wstandend (status_window) ;
wprintw(status_window,"%d",len);
clean(3,0);
wstandout (status_window) ;
mvwaddstr (status_window,3,0,"Data is : ")
wstandend (status_window) ;
s[len]=0;
wprintw(status_window,"%s",s);

else

wprintw(status_window,"NO ");

clean(2,0);

wstandout (status_window) ;

mvwaddstr (status_window,2,0,"Data Read : ");
wstandend (status_window) ;
wprintw(status_window,"%d",0);

clean(3,0);

wstandout (status_window) ;

mvwaddstr (status_window,3,0,"Data is : ")

}

time (&current_time) ;
if (current_time >= last_time + 5)
{
last_time = current_time;
len = write_data("Time to bug you.\n",
sizeof ("Time to bug you.\n"));

TR 81 — 22



CHARA USER INTERFACE

clean(4,0);

wstandout (status_window) ;

mvwaddstr (status_window,4,0,"Data Write : ");
wstandend (status_window) ;
wprintw(status_window,"%d",len);

¥

return NOERROR;

} /* data_status() */

TR 81 — 23



TECHNICAL REPORT NO. 81

B. EXAMPLE FUNCTION DEFINITION FILE

Here is the function definition file used by the example program in Appendix A. All the
functions referred to here come from within the user interface itself except the example
function listed last. It is normal to have all of the functions below available in any user
interface implementation except this one example function.

/************************************************************************/

/* functs.c x/
/* */
/* Description */
/* Sets up look up table array of user callable function modules.*/
/% This is the file to change (along with menus.ini) when */
/* installing new user callable functions. */
/3 ok ok sk ok ko o K ok o K ok ok ok sk ok o kK ok sk sk ok Kok ok sk ok sk sk ok ok sk ok sk sk ok sk sk ok Kok ok sk ok kok ok ok ok /
/* */
/* CHARA ARRAY USER INTERFACE */
/* Based on the SUSI User Interface x/
/* In turn based on the CHIP User interface x/
/* */
/* Center for High Angular Resolution Astronomy x/
/* Mount Wilson Observatory, CA 91001, USA */
/* */
/* Telephone: 1-626-796-5405 x/
/* Fax : 1-626-796-6717 */
/* email : theo chara.gsu.edu x/
/* WWW : http://www.chara.gsu.edu x/
/* */
/* (C) This source code and its associated executable x/
/* program(s) are copyright. x/
/* */
/************************************************************************/
/* */
/* Author : Tony Johnson & Theo ten Brummelaar */
/* Date : Original Version 1990 - ported to Linux 1998 */

/************************************************************************/

/*
* The following definition is required to ensure there are no
* compile time re-definition errors.

*/

#tdefine FUNCTS
#include "charaui.h"

/*

* Declare any local functions here.

*/

int example(int argc, char **argv);

TR 81 — 24



CHARA USER INTERFACE

* Definition of user callable function index array.

* Note that this array starts and ends with NULLs. This is so a

* index of O gives nothing and also to help find the end of the array
* The strings preceding the function names are the command strings

* that will be recognized by the command line and the menuing system.
* A1l access to these functions are via this table.

struct {
char *name ;
int (*function) (int argc, char **xargv);
} functions[] =

{ {NULL, NULL}, /* Must begin with a NULL */

/*
* Make sure all standard user interface functions
* are available.

x/
#include<std_ui_functs.h>

/*

¥ If this is a real-time control user interface,
* make sure all standard clock functions

* are available.

*/

#include<std_rt_functs.h>

/*
* Now add any local functions.
*/
{"example", examplel,
{NULL, NULL} }; /* Must end with a NULL */

TR 81 — 25



TECHNICAL REPORT NO. 81

C. EXAMPLE MENU DEFINITION FILE

Here is the menu definition file used by the example program in Appendix A. All the
functions referred to here come from within the user interface itself except the example
function listed last.

# File : menus.ini
#
# Purpose : initialization file for the menu system
#
# NOTE : The hash symbol ’#’ at any point in the file denotes that
# the rest of the line is a comment.
#
# This file must exist in the home directory. If it is missing, there
# will be a fatal error generation. If there are corrupt sections of this
# file there may or may not be fatal, major, or warning messages.
#
# See the user’s manual for information concerning the maintenance of
# this file.
#
MENU MAIN
help Get help
commands List available commands
auto Select Auto function list
utils Utilities Menu
background Background control menu
socket Socket control menu
example Try the example function
one Select Menu One
two Select Menu Two
end Quit system
MENU BACKGROUND
help Get help
sb Start Background
stb Stop Background
bon Background on
boff Background off
bkp Bypass Keyboard Polling
sleep Put Controller to Sleep
end Quit system
MENU SOCKET
help Get help
block Block socket commands
unblock Unblock socket commands
os Open command socket
cs Close command socket
soccom Communicate with a socket

TR 81 — 26



bm
sm
bl
sl

MENU
help
auto
bkp
sleep
shell
dir
asccom
end

MENU ONE
help
auto
ni
two
three
four
five
six
utils
end

MENU TWO

help
auto
one
ni
three
four
five
six
utils
end

MENU THREE
help
auto
one
two
ni
four
five
six
utils
end

CHARA USER INTERFACE

Start socket command monitor
Stop socket command monitor
Start socket command log
Stop socket command log

UTILS

Get help

Select Auto function list
Bypass Keyboard Polling

Put Controller to Sleep

Get system shell

View directory

Communicate with a serial port
Quit system

Get help

Select Auto function list
Try a non-implemented call
Select Menu Two

Select Menu Three

Select Menu Four

Select Menu Five

Select Menu Six

Utilities Menu

Quit system

Get help

Select Auto function list
Select Menu One

Try a non-implemented call
Select Menu Three

Select Menu Four

Select Menu Five

Select Menu Six

Utilities Menu

Quit system

Get help

Select Auto function list
Select Menu One

Select Menu Two

Try a non-implimented call
Select Menu Four

Select Menu Five

Select Menu Six

Utilities Menu

Quit system

TR 81 — 27



MENU FOUR
help
auto
one
two
three
ni
five
six
utils
end

MENU FIVE
help
auto
one
two
three
four
ni
six
utils
end

MENU SIX
help
auto
one
two
three
four
five
ni
utils
end

AUTOLIST
sb

od 1025

boff

TECHNICAL REPORT NO. 81

Get help

Select Auto function list
Select Menu One

Select Menu Two

Select Menu Three

Try a non-implimented call
Select Menu Five

Select Menu Six

Utilities Menu

Quit system

Get help

Select Auto function list
Select Menu One

Select Menu Two

Select Menu Three

Select Menu Four

Try a non-implimented call
Select Menu Six

Utilities Menu

Quit system

Get help

Select Auto function list
Select Menu One

Select Menu Two

Select Menu Three

Select Menu Four

Select Menu Five

Try a non-implimented call
Utilities Menu

Quit system

example one two three

bkp
bon

goto boff

bkp

ni These are some arguments

goto bkp

stb
sb

TR 81 — 28



CHARA USER INTERFACE

A. EXAMPLE SCRIPT FILE

# File : test.scr
#
# Purpose : Test of the scripting system.
#
ONnerror error
1s
onfatal fatal
help asccom
onmessage end
ask Do you want to quit now?
message Glad you didn’t decide to quit.
goto end
warning:
message I’m warning you!
goto end
error:
message Oooops something terrible has happened.
goto end
fatal:
message Oh no... a fatal error!
goto end
end:
endscript

TR 81 — 29



TECHNICAL REPORT NO. 81

B. EXAMPLE HELP INITIALIZATION FILE

NOTE : The hash symbol ’#’ at any point in the file denotes that
the rest of the line is a comment.

File help.ini

Purpose Information for the help initialization process

This file should reside in the home directory of the UI software.

If this file is not found by the initialization process, a diagnostic
message will be printed to the screen and the user will not have any help
available for the software. This does NOT affect the other processes of

the software. This file may be maintained and/or modified by the user within
the following guidelines:

1. This file contains only the following information:
a. Filenames containing help text, and
b. A description of what that help text is.

HOH H H H HH HHEHHEHHHHHEHHEHHHEHHEH R

2. The help files that are described in this file MUST exist in the help
directory. If the file is not found by the initialization process, a
diagnostic message will be printed to the screen. This does NOT affect
the other processes of the help system or the operation of the software.

3. If a user adds additional help files to or removes files from the help
directory, this file should be adapted accordingly or the help text
in the new file will not be available.
Refer to the header section of existing help files for further
information on creating help files.

Filename

./help/asccom.hlp

../help/soccom.hlp
../help/bkp.hlp
../help/block.hlp
../help/cs.hlp
../help/help.hlp
../help/shell.hlp
../help/dir.hlp
../help/commands.hlp
../help/os.hlp
../help/sleep.hlp
../help/end.hlp
../help/auto.hlp
../help/sb.hlp
../help/bl.hlp
./help/bm.hlp

Description of help available

ASCII communication with a serial port
ASCII communication with a socket port
Blocking the keyboard

Blocking the socket command port
Closing the command socket port
Getting help

Getting a command shell

Listing the current directory

List all commands

Opening the command socket port
Putting the program to sleep

Quiting the program

Running the automatic command list
Start background processing

Start logging socket commands

Start monitoring socket commands

TR 81 — 30



../help/stb.hlp
../help/sl.hlp
../help/sm.hlp
../help/boff .hlp
../help/bon.hlp
../help/unblock.hlp
. ./help/asccom.hlp
../help/auto.hlp
../help/bkp.hlp
../help/block.hlp
../help/bl.hlp
../help/bm.hlp
../help/boff .hlp
../help/boff .hlp
../help/bon.hlp
../help/commands.hlp
../help/cs.hlp
../help/dir.hlp
../help/end.hlp
../help/end.hlp
../help/help.hlp
../help/dir.hlp
../help/os.hlp
../help/ping.hlp
../help/sb.hlp
../help/shell.hlp
../help/sleep.hlp
../help/sl.hlp
../help/sm.hlp
../help/soccom.hlp
../help/stb.hlp
../help/end.hlp
../help/unblock.hlp
../help/end.hlp

CHARA USER INTERFACE

Stop background processing
Stop logging socket commands
Stop monitoring socket commands
Turning background processing off
Turning background processing on
Unblocking the socket command port
asccom

auto

bkp

block

bl

bm

bo

boff

bon

commands

cs

dir

end

exit

help

1s

os

ping

sb

shell

sleep

sl

sm

soccom

stb

stop

unblock

quit

TR 81 — 31



TECHNICAL REPORT NO. 81

C. EXAMPLE HELP FILE

.center
ASCCOM
.center

.paragraph

SYNOPSIS:

.paragraph

asccom {port}

.paragraph

DESCRIPTION:

.paragraph

ASCCOM allows the user to communicate with a serial port. Anything typed on the
keyboard is sent to the port and anything sent by the port is put on the
screen. All of this is done as standard ascii characters. Typing the
escape key will return the user to the menu system.

The default port is /dev/modem.
When formatted by the user interface this text should look like this:

ASCCOM

SYNOPSIS:
asccom {port}

DESCRIPTION:

ASCCOM allows the user to communicate with a serial port. Anything
typed on the keyboard is sent to the port and anything sent by the port
is put on the screen. All of this is done as standard ascii characters.
Typing the escape key will return the user to the menu system. The
default port is /dev/modem.

TR 81 — 32



CHARA USER INTERFACE

D. EXAMPLE MAKEFILE

#uRHHERHH RS R RS R AR H RS HHAGHHBEHHBAGHRER SRR HH AR HH B HHHASHR RS R R H RS

# Makefile #
# #
# Makefile for the CHARAUI system. #
i R R R R
# Center for High Angular Resolution Astronomy #
# Georgia State University, Atlanta GA 30303-3083, U.S.A. #
# #
# Telephone: 1-626-796-5405 email : theo chara.gsu.edu #
# Fax : 1-626-796-6717 WWw : http:www.chara.gsu.edu #
# #
# (C) This source code and its associated executable #
# program(s) are copyright. #

i A
# Author : Theo ten Brummelaar #
# Date : May 1998 #
HEHH R R

# If you are going to change something it’ll probably be here:

CC= gcc
CFLAGS= -g -0 -Wall -pedantic
LFLAGS= -charaui -lncurses -1lc -1m

#
# Master target
#

all: testui

#
# test routines
#

testui: testui.o functs.o
$(CC) $(CFLAGS) -0 testui testui.o functs.o $(LFLAGS)

testui.o: testui.c
$(CC) $(CFLAGS) -c testui.c

functs.o: functs.c

$(CC) $(CFLAGS) -c functs.c
#
# Rule for cleaning up the directory
#

clean:
rm -f testui.o testui core functs.o

TR 81 — 33



TECHNICAL REPORT NO. 81

E. MANUAL PAGES

Here follows a complete list of the functions in the user interface library. Manual pages are

available for all of these functions.

all_socket_print ()
alloc_list_item()
asccom()

ask_yes_no()
background ()
background_add ()
background_add_name ()
background_del ()
background_off ()
background_on()
background_start ()
background_stop()
block_sockets()
break_into_lines()
bypass_key_poll()
bypass_key_poll_off ()
call_block_sockets()
call_close_command_socket ()
call_close_data_socket ()
call_function()
call_open_command_socket ()
call_open_data_socket ()
call_send_socket_command()
call_unblock_sockets()
center_line()
char_waiting()
check_command ()
checkone ()
clear_display()
close_command_socket ()
close_curses()
close_data_socket ()
close_menu_window ()
close_serial_port()
command_processor ()
commands ()
copy_scred_field()
copy_scred_page ()
data_connected()
data_open()
data_ready()
delete_script()
delete_scripts()
down_key ()

edit_page ()

error()
error_messages_off ()
error_messages_on()
exception()
fill_text_format ()
find_function()
find_list_item()
find_menu()
find_script()
flush_command_socket ()
free_list_item()
get_command ()
get_menu_help()
get_user_input ()
getline ()
go_to_sleep()
heading()

help_line()
highlight ()
inc_number_text_lines()
init_auto()
init_curses()
init_display()
init_help()
init_menu_structure()
init_script()
initialise_ui()
key_help()
line_edit ()
lock_file_name()
machines_connected()
menu ()

message ()
new_script()
open_command_socket ()
open_connect_socket ()
open_data_socket ()
open_serial_port ()
os_utils()
parse_script ()
passone ()

passthree()

passtwo()
pick_choice()

ping()

TR 81 — 34



CHARA USER INTERFACE

plain_screen_off ()
plain_screen_on()
printd()
process_command_socket ()
put_comefrom_into_store()
put_line()

put_store_reversed_into_gotonext ()

quick_edit ()
read_data()
read_data_fast ()
refresh_menu_window ()
refresh_screen()
remove_buffer ()
return_true()

scred()

scripts()
scroll_text ()
send_socket_command ()
serial_getchar()
serial_gets()
serial_print ()
serial_putchar ()
serial_scan()
set_serial_baud_rate()
set_serial_bitlength()
set_serial_hard_handshake()
set_serial_parity()
set_serial_stopbits()
set_serial_xonxoff ()
set_up_buffer ()
set_up_menu_window ()

show_char ()

show_string()

soccom()

socket_gets()
socket_print ()
socket_scan()
split_string()
start_socket_command_log()
start_socket_command_monitor ()
start_ui()
stop_socket_command_log()
stop_socket_command_monitor ()
strcmpi ()
test_socket_scan()
text_format ()

ui_auto()

ui_auto_socket ()

ui_end()

ui_help()

ui_list()

ui_shell()
unblock_sockets()
unhighlight ()

up_key ()

view_dir()
wait_for_title()

wake_up()

write_data()
write_data_fast()
write_ready()

TR 81 — 35



